Solveeit Logo

Question

Mathematics Question on distance between two points

The length of perpendicular from the origin onto the line r=(4i^+2j^+4k^)+λ(3i^+4j^5k^)\vec{r} = (4 \hat{i} + 2 \hat{j} + 4 \hat{k}) + \lambda (3 \hat{i} + 4 \hat{j} - 5 \hat{k} ) is

A

252 \sqrt{5}

B

2

C

525 \sqrt{2}

D

6

Answer

6

Explanation

Solution

Required distance =((40)i^+(20)j^+(40)k^)×(3i^+4j^5k^)32+42+52 = \frac{\left|\left(\left(4-0\right)\hat{i} + \left(2-0\right) \hat{j} + \left(4-0\right)\hat{k}\right) \times\left(3 \hat{i} + 4 \hat{j} - 5 \hat{k}\right)\right|}{ \sqrt{3^{2}+4^{2}+5^{2}}} =(4i^+2j^+4k^)×(3i^+4j^5k^)50= \frac{\left|\left(4\hat{i} + 2 \hat{j} + 4 \hat{k}\right) \times\left(3\hat{i} + 4 \hat{j} - 5 \hat{k}\right)\right|}{\sqrt{50}} =26i^+32j^+10k^50= \frac{\left|-26 \hat{i} + 32 \hat{j} + 10\hat{k}\right|}{\sqrt{50}}