Solveeit Logo

Question

Question: The length of perpendicular from (0, 0) to the tangent drawn to the curve \(y^{2} = 4(x + 2)\) at p...

The length of perpendicular from (0, 0) to the tangent drawn

to the curve y2=4(x+2)y^{2} = 4(x + 2) at point (2, 4) is

A

12\frac{1}{\sqrt{2}}

B

35\frac{3}{\sqrt{5}}

C

65\frac{6}{\sqrt{5}}

D

1

Answer

65\frac{6}{\sqrt{5}}

Explanation

Solution

Differentiating the given equation w.r.t. x , 2ydydx=42y\frac{dy}{dx} = 4 at point

(2, 4) dydx=12\frac{dy}{dx} = \frac{1}{2}

P=y1x1(dydx)1+(dydx)2P = \frac{y_{1} - x_{1}\left( \frac{dy}{dx} \right)}{\sqrt{1 + \left( \frac{dy}{dx} \right)^{2}}} = 42(12)1+14=65\frac{4 - 2\left( \frac{1}{2} \right)}{\sqrt{1 + \frac{1}{4}}} = \frac{6}{\sqrt{5}}.

f(x)0,f^{'}(x) \geq 0, if x[12,1]x \in \left\lbrack - \frac{1}{2},1 \right\rbrack, because ex(1x)e^{x(1 - x)} is always positive. So, f(x)f(x) is increasing on [12,1]\left\lbrack - \frac{1}{2},1 \right\rbrack.