Solveeit Logo

Question

Question: The length of longer diagonal of the parallelogram constructed on 5**a** + 2**b** and **a** – 3**b**...

The length of longer diagonal of the parallelogram constructed on 5a + 2b and a – 3b, it is given that a=22,b=3|a| = 2\sqrt{2},|b| = 3 and angle between a and b is π4\frac{\pi}{4}, is

A

15

B

113\sqrt{113}

C

593\sqrt{593}

D

cosθ=319\cos\theta = \frac{3}{19}

Answer

593\sqrt{593}

Explanation

Solution

Length of the two diagonals will be

d1=(5a+2b)+(a3b)d_{1} = |(5\mathbf{a} + 2\mathbf{b}) + (\mathbf{a} - 3\mathbf{b})| and d2=(5a+2b)(a3b)d_{2} = |(5\mathbf{a} + 2\mathbf{b}) - (\mathbf{a} - 3\mathbf{b})|

d1=6abd_{1} = |6\mathbf{a} - \mathbf{b}|, d2=4a+5bd_{2} = |4\mathbf{a} + 5\mathbf{b}|

Thus, d1=6a2+b2+26abcos(ππ/4)d_{1} = \sqrt{|6\mathbf{a}|^{2} + | - \mathbf{b}|^{2} + 2|6\mathbf{a}|| - \mathbf{b}|\cos(\pi - \pi/4)}

= 36(22)2+9+12.22.3.(12)\sqrt{36(2\sqrt{2})^{2} + 9 + 12.2\sqrt{2}.3.\left( - \frac{1}{\sqrt{2}} \right)} = 15.

d2=4a2+5b2+24a5bcosπ4d_{2} = \sqrt{|4\mathbf{a}|^{2} + |5\mathbf{b}|^{2} + 2|4\mathbf{a}||5\mathbf{b}|\cos\frac{\pi}{4}}

= 16×8+25×9+40×22×3×12\sqrt{16 \times 8 + 25 \times 9 + 40 \times 2\sqrt{2} \times 3 \times \frac{1}{\sqrt{2}}} = 593\sqrt{593}.

\therefore Length of the longer diagonal = 593\sqrt{593}