Solveeit Logo

Question

Physics Question on Hooke's Law

The length of elastic string, obeying Hooke�s law is 1\ell_{1} metres when the tension 4N4N and 2\ell_{2} metres when the tension is 5N5N. The length in metres when the tension is 9N9N is -

A

51425\ell_{1} - 4\ell_{2}

B

52415\ell_{2} - 4\ell_{1}

C

91829\ell_{1} - 8\ell_{2}

D

92819\ell_{2} - 8\ell_{1}

Answer

52415\ell_{2} - 4\ell_{1}

Explanation

Solution

Let 0\ell_{0} be the unstretched length and 3\ell_{3} be the length under a tension of 9N9N. Then
Y=40A(10)=50A(20)Y = \frac{4\ell_{0}}{A\left(\ell _{1}-\ell _{0}\right)} = \frac{5\ell _{0}}{A\left(\ell _{2}-\ell _{0}\right)}
=90A(30)= \frac{9\ell _{0}}{A\left(\ell _{3}-\ell _{0}\right)}
These give
410=5200=5142\frac{4}{\ell _{1}-\ell _{0}} = \frac{5}{\ell _{2}-\ell _{0}} \Rightarrow \ell_{0} = 5\ell_{1} -4\ell_{2}
Further, 410=920\frac{4}{\ell _{1}-\ell _{0}} = \frac{9}{\ell _{2}-\ell _{0}}
Substituting the value of 0\ell_{0} and solving, we get 3=5241\ell _{3} = 5\ell _{2} -4\ell _{1}