Solveeit Logo

Question

Question: The length of chord of contact of the tangents drawn from the point (2, 5) to the parabola \(y ^ { ...

The length of chord of contact of the tangents drawn from the point (2, 5) to the parabola y2=8xy ^ { 2 } = 8 x is

A

1241\frac { 1 } { 2 } \sqrt { 41 }

B

41\sqrt { 41 }

C

3241\frac { 3 } { 2 } \sqrt { 41 }

D

2412 \sqrt { 41 }

Answer

3241\frac { 3 } { 2 } \sqrt { 41 }

Explanation

Solution

Equation of chord of contact of tangents drawn from a point (x1,y1)\left( x _ { 1 } , y _ { 1 } \right)to parabola y2=4axy ^ { 2 } = 4 a xis yy1=2a(x+x1)y y _ { 1 } = 2 a \left( x + x _ { 1 } \right). So that

5y=2×2(x+2)5 y = 2 \times 2 ( x + 2 )5y=4x+85 y = 4 x + 8.

Point of intersection of chord of contact with parabola y2=8xy ^ { 2 } = 8 xare 3241\frac { 3 } { 2 } \sqrt { 41 }