Solveeit Logo

Question

Question: The length of altitude through A of the triangle ABC, where \(A \equiv ( - 3,0);B \equiv (4, - 1);C ...

The length of altitude through A of the triangle ABC, where A(3,0);B(4,1);C(5,2),A \equiv ( - 3,0);B \equiv (4, - 1);C \equiv (5,2), is.

A

210\frac{2}{\sqrt{10}}

B

410\frac{4}{\sqrt{10}}

C

1110\frac{11}{\sqrt{10}}

D

2210\frac{22}{\sqrt{10}}

Answer

2210\frac{22}{\sqrt{10}}

Explanation

Solution

In ABC\triangle A B C, A(3,0);B(4,1)A \equiv ( - 3,0 ) ; B \equiv ( 4 , - 1 ) and C(5,2)C \equiv ( 5,2 )

We know that BC=(54)2+(2+1)2B C = \sqrt { ( 5 - 4 ) ^ { 2 } + ( 2 + 1 ) ^ { 2 } } =1+9=10= \sqrt { 1 + 9 } = \sqrt { 10 }

and area of ABC\triangle A B C

=12[3(12)+4(20)+5(0+1)]=11= \frac { 1 } { 2 } [ - 3 ( - 1 - 2 ) + 4 ( 2 - 0 ) + 5 ( 0 + 1 ) ] = 11

Therefore, altitude AL=2ΔABCBC=2×1110=2210A L = \frac { 2 \Delta A B C } { B C } = \frac { 2 \times 11 } { \sqrt { 10 } } = \frac { 22 } { \sqrt { 10 } } .