Solveeit Logo

Question

Question: The length of a wire is 1.0 m and the area of cross-section is \(1.0 \times 10 ^ { - 2 } \mathrm {~c...

The length of a wire is 1.0 m and the area of cross-section is 1.0×102 cm21.0 \times 10 ^ { - 2 } \mathrm {~cm} ^ { 2 }. If the work done for increase in length by 0.2 cm is 0.4 joule, then Young's modulus of the material of the wire is

A

2.0×1010 N/m22.0 \times 10 ^ { 10 } \mathrm {~N} / \mathrm { m } ^ { 2 }

B

4×1010 N/m24 \times 10 ^ { 10 } \mathrm {~N} / \mathrm { m } ^ { 2 }

C

2.0×1011 N/m22.0 \times 10 ^ { 11 } \mathrm {~N} / \mathrm { m } ^ { 2 }

D

2×1010 N/m22 \times 10 ^ { 10 } \mathrm {~N} / \mathrm { m } ^ { 2 }

Answer

2.0×1011 N/m22.0 \times 10 ^ { 11 } \mathrm {~N} / \mathrm { m } ^ { 2 }

Explanation

Solution

W=12YAl2LW = \frac { 1 } { 2 } \frac { Y A l ^ { 2 } } { L }0.4=12×Y×16×(0.2×102)210.4 = \frac { 1 } { 2 } \times \frac { Y \times 1 ^ { - 6 } \times \left( 0.2 \times 10 ^ { - 2 } \right) ^ { 2 } } { 1 }

∴ Y=2×1011 N/m2= 2 \times 10 ^ { 11 } \mathrm {~N} / \mathrm { m } ^ { 2 }