Solveeit Logo

Question

Physics Question on elastic moduli

The length of a rubber cord is l1{{l}_{1}} metre when the tension is 4N4\, N and l2{{l}_{2}} metre when the tension is 6N6\, N . The length when the tension is 9N9\,N, is

A

(2.5l21.5l1)m(2.5{{l}_{2}}-1.5{{l}_{1}})m

B

(6l21.5l1)m(6{{l}_{2}}-1.5{{l}_{1}})m

C

(3l22l1)m(3{{l}_{2}}-2{{l}_{1}})m

D

(3.5l22.5l1)m(3.5{{l}_{2}}-2.5{{l}_{1}})m

Answer

(2.5l21.5l1)m(2.5{{l}_{2}}-1.5{{l}_{1}})m

Explanation

Solution

Let the original unstretched length be l.l.
Y=StressStrain=T/AΔl/l=TA×lΔlY=\frac{Stress}{Strain}=\frac{T/A}{\Delta l/l}=\frac{T}{A}\times \frac{l}{\Delta l}
Now Y=4Al(l1l)=6Al(l2l)Y=\frac{4}{A}\frac{l}{({{l}_{1}}-l)}=\frac{6}{A}\frac{l}{({{l}_{2}}-l)}
=9Al(l3l)=\frac{9}{A}\frac{l}{({{l}_{3}}-l)}
\therefore 4(l3l)=9(l1l)4({{l}_{3}}-l)=9({{l}_{1}}-l)
\Rightarrow 4l3+5l=9l14{{l}_{3}}+5l=9{{l}_{1}} .... (i)
Again, 6(l3l)=9(l2l)6({{l}_{3}}-l)=9({{l}_{2}}-l)
\Rightarrow 2l3+l=3l22{{l}_{3}}+l=3{{l}_{2}} ...(ii)
Solve Eqs. (i) and (ii), we obtain
l3=(2.5l21.5l1){{l}_{3}}=(2.5{{l}_{2}}-1.5{{l}_{1}})