Solveeit Logo

Question

Question: The length of a rod under longitudinal tension $T_1$ is $L_1$ and that under longitudinal tension $T...

The length of a rod under longitudinal tension T1T_1 is L1L_1 and that under longitudinal tension T2T_2 is L2L_2. What is the actual length of the rod, in the absence of tensions?

A

L1T1L2T2T2T1\frac{L_1T_1-L_2T_2}{T_2-T_1}

B

L1T2L2T1T2+T1\frac{L_1T_2-L_2T_1}{T_2+T_1}

C

L1T1L2T2T2+T1\frac{L_1T_1-L_2T_2}{T_2+T_1}

D

L1T2L2T1T2T1\frac{L_1T_2-L_2T_1}{T_2-T_1}

Answer

L1T2L2T1T2T1\frac{L_1T_2-L_2T_1}{T_2-T_1}

Explanation

Solution

The length of a rod under longitudinal tension TT is given by L=L0(1+TAY)L = L_0 \left(1 + \frac{T}{AY}\right), where L0L_0 is the original length. This can be written as L=L0+(L0AY)TL = L_0 + \left(\frac{L_0}{AY}\right)T. This is a linear relationship between LL and TT. We have two points (T1,L1)(T_1, L_1) and (T2,L2)(T_2, L_2). The equation of the line passing through these points is LL1TT1=L2L1T2T1\frac{L - L_1}{T - T_1} = \frac{L_2 - L_1}{T_2 - T_1}. The actual length of the rod in the absence of tension is L0L_0, which is the value of LL when T=0T=0. Substituting T=0T=0 and L=L0L=L_0: L0L10T1=L2L1T2T1\frac{L_0 - L_1}{0 - T_1} = \frac{L_2 - L_1}{T_2 - T_1}. Solving for L0L_0: L0=L1T1(L2L1T2T1)=L1(T2T1)T1(L2L1)T2T1=L1T2L1T1T1L2+T1L1T2T1=L1T2L2T1T2T1L_0 = L_1 - T_1 \left(\frac{L_2 - L_1}{T_2 - T_1}\right) = \frac{L_1(T_2 - T_1) - T_1(L_2 - L_1)}{T_2 - T_1} = \frac{L_1T_2 - L_1T_1 - T_1L_2 + T_1L_1}{T_2 - T_1} = \frac{L_1T_2 - L_2T_1}{T_2 - T_1}.