Solveeit Logo

Question

Question: The length of a minute hand of a clock is 4 cm. Find the displacement and average velocity of the ti...

The length of a minute hand of a clock is 4 cm. Find the displacement and average velocity of the tip of the minute hand when it moves during a time interval from
(a) 3:15 pm to 3:30 pm (b) 4:15 pm to 4:45 pm.
A. (a) 2225  cms1\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}} (b) 2225  cms1\dfrac{2}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}
B. (a) 3225  cms1\dfrac{{\sqrt 3 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}} (b) 1225  cms1\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}
C.(a) 2225  cms1\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}} (b) 1225  cms1\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}
D. (a) 12225  cms1\dfrac{{\sqrt {12} }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}} (b) 2225  cms1\dfrac{2}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}

Explanation

Solution

The expression of the average velocity of the tip can be determined by dividing the displacement occurs in the position of the minute hand of the clock between its initial and final position with the total time taken by the minute hand of the clock.

Complete step by step solution:
Given:
The length of the minute hand of a clock is l=4  cml = 4\;{\rm{cm}}.

(a)
The expression of the displacement of the minute hand is,
D=l2+l2D = \sqrt {{l^2} + {l^2}}

Here DD is the displacement of the minute hand.

Substitute the value in the above expression
D=4  cm+  4  cm D=8  cm D=42  cm\begin{array}{l} D = \sqrt {4\;{\rm{cm}} + \;4\;{\rm{cm}}} \\\ D = \sqrt 8 \;{\rm{cm}}\\\ D = 4\sqrt 2 \;{\rm{cm}} \end{array}

The expression of the average velocity of the minute hand is,
vavg=dt{v_{avg}} = \dfrac{d}{t}
Here dd is the displacement and tt is the total time.

Substitute the values in the above expression
vavg=42  cm15  min  ×60  s  1min vavg=42  cm900  s vavg=vavg=2  225  cms1\begin{array}{l} {v_{avg}} = \dfrac{{4\sqrt 2 \;{\rm{cm}}}}{{15\;{\rm{min}}\; \times \dfrac{{60\;{\rm{s}}}}{{\;{\rm{1 min}}}}}}\\\ {v_{avg}} = \dfrac{{4\sqrt 2 \;{\rm{cm}}}}{{900\;{\rm{s}}}}\\\ {v_{avg}} = {v_{avg}} = \dfrac{{\sqrt 2 \;}}{{225\;}}{\rm{cm}}{{\rm{s}}^{ - 1}} \end{array}

(b)
The expression of the displacement of the minute hand is,
D=2lD = 2l

Substitute the value in the above expression
D=2(4  cm) D=8  cm\begin{array}{l} D = 2\left( {4\;{\rm{cm}}} \right)\\\ D = 8\;{\rm{cm}} \end{array}

The expression of the average velocity of the minute hand is,
vavg=dt{v_{avg}} = \dfrac{d}{t}

Substitute the values in the above expression
vavg=8  cm30  min  ×60  s  1min vavg=8  cm1800  s vavg=1225  cms1\begin{array}{l} {v_{avg}} = \dfrac{{8\;{\rm{cm}}}}{{30\;{\rm{min}}\; \times \dfrac{{60\;{\rm{s}}}}{{\;{\rm{1 min}}}}}}\\\ {v_{avg}} = \dfrac{{8\;{\rm{cm}}}}{{1800\;{\rm{s}}}}\\\ {v_{avg}} = \dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}} \end{array}

Therefore, the option (C) is the correct answer that is (a) 2225  cms1\dfrac{{\sqrt 2 }}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}} (b) 1225  cms1\dfrac{1}{{225}}\;{\rm{cm}}{{\rm{s}}^{ - 1}}.

Note: For the calculation of the displacement in part (a), use the concept of Pythagoras and in part (b), minute hand makes 180 degree between its initial and final position, so for the displacement calculation just double the length of minute hand.