Solveeit Logo

Question

Question: The length of a metal wire is \[{l_1}\] when the tension in it is \[{T_1}\] and is \[{l_2}\] when th...

The length of a metal wire is l1{l_1} when the tension in it is T1{T_1} and is l2{l_2} when the tension is T2{T_2}. What is the natural length of the wire?
A. l1+l22\dfrac{{{l_1} + {l_2}}}{2}
B. l1l2\sqrt {{l_1}{l_2}}
C. l1T2l2T1T2T1\dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}}
D. l1T2+l2T1T2+T1\dfrac{{{l_1}{T_2} + {l_2}{T_1}}}{{{T_2} + {T_1}}}

Explanation

Solution

Formula for Young Modulus is given as,
Young  Modulus  =  Normal  StressLongitudinal  Strain{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{{\text{Normal}}\;{\text{Stress}}}}{{{\text{Longitudinal}}\;{\text{Strain}}}}.
Normal  Stress=TA{\text{Normal}}\;{\text{Stress}} = \dfrac{T}{A}
Longitudinal  Strain=Δll{\text{Longitudinal}}\;{\text{Strain}} = \dfrac{{\Delta l}}{l}

Complete step by step solution:
Given,
The length of a metal wire is l1{l_1} when the tension in it is T1{T_1}
And the length of the metal wire is l2{l_2} when the tension in it is T2{T_2}
Let us assume that the original length of the metal wire be ll.
And the area of the metal wire be AA.

In first case, change in length in the metal wire,
=l1l= {l_1} - l
In second case, change in length in the metal wire,
=l2l= {l_2} - l

Young's modulus is a material property which measures a solid material's strength. It describes the relation between stress and strain in the linear elasticity regime of an uniaxial deformation in a material.

Formula for Young Modulus is given as,
Young  Modulus  =  Normal  StressLongitudinal  Strain{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{{\text{Normal}}\;{\text{Stress}}}}{{{\text{Longitudinal}}\;{\text{Strain}}}}
Normal stress is given by,
Normal  Stress=TA{\text{Normal}}\;{\text{Stress}} = \dfrac{T}{A}
Longitudinal Strain is given by,
Longitudinal  Strain=Δll{\text{Longitudinal}}\;{\text{Strain}} = \dfrac{{\Delta l}}{l}
Now, Young  Modulus  =  TAΔll{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta l}}{l}}}
Where, TT is tension,
Δl\Delta l is change in length

For first case,
Y1=T1A×ll1l{Y_1} = \dfrac{{{T_1}}}{A} \times \dfrac{l}{{{l_1} - l}} …… (i)
For second case,
Y2=T2A×ll2l{Y_2} = \dfrac{{{T_2}}}{A} \times \dfrac{l}{{{l_2} - l}} …… (ii)
For both the cases, Young Modulus remains same,
Therefore we equate equation (i) and (ii), as Y1{Y_1} is equal to Y2{Y_2}

T1A×ll1l=T2A×ll2l T1l1l=T2l2l  \dfrac{{{T_1}}}{A} \times \dfrac{l}{{{l_1} - l}} = \dfrac{{{T_2}}}{A} \times \dfrac{l}{{{l_2} - l}} \\\ \dfrac{{{T_1}}}{{{l_1} - l}} = \dfrac{{{T_2}}}{{{l_2} - l}} \\\

Further solving the above equation to determine the value of ll

T1l1l=T2l2l T1l2T1l=T2l1T2l T2lT1l=T2l1T1l2 l(T2T1)=T2l1T1l2 l=T2l1T1l2T2T1  \dfrac{{{T_1}}}{{{l_1} - l}} = \dfrac{{{T_2}}}{{{l_2} - l}} \\\ {T_1}{l_2} - {T_1}l = {T_2}{l_1} - {T_2}l \\\ {T_2}l - {T_1}l = {T_2}{l_1} - {T_1}{l_2} \\\ l\left( {{T_2} - {T_1}} \right) = {T_2}{l_1} - {T_1}{l_2} \\\ l = \dfrac{{{T_2}{l_1} - {T_1}{l_2}}}{{{T_2} - {T_1}}} \\\

Therefore the length of the metal wire is T2l1T1l2T2T1\dfrac{{{T_2}{l_1} - {T_1}{l_2}}}{{{T_2} - {T_1}}}

Hence, the correct option is C.

Note: In both cases, we subtract the original length from the given two lengths to find the change in length. Hence, the change in lengths will be l1l{l_1} - l and l2l{l_2} - l respectively. The formula for Young Modulus is given by Young  Modulus  =  TAΔll{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta l}}{l}}}, after replacing the values of normal stress and longitudinal strain respectively. Here, Δl\Delta l represents the change in length in the metal wire.