Solveeit Logo

Question

Question: The \(\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A\) is equal to A. \(\se...

The (secA+tanA1)(secAtanA+1)2tanA\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A is equal to
A. secA\sec A
B. 2secA2\sec A
C. 0
D. 2

Explanation

Solution

We use the identity formula of (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} assuming a=secA;b=tanA1a=\sec A;b=\tan A-1. Then we simplify the whole expression and use the trigonometric formula of sec2A=tan2A+1{{\sec }^{2}}A={{\tan }^{2}}A+1 to find the final solution.

Complete step by step answer:
We first multiply the (secA+tanA1)(secAtanA+1)\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right) part by using the identity formula of (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}. In this case we assume a=secA;b=tanA1a=\sec A;b=\tan A-1. Therefore,
(secA+tanA1)(secAtanA+1)=(secA)2(tanA1)2\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right) ={{\left( \sec A \right)}^{2}}-{{\left( \tan A-1 \right)}^{2}}
Now we simplify the whole expression
(secA+tanA1)(secAtanA+1)2tanA=(secA)2(tanA1)22tanA (secA+tanA1)(secAtanA+1)2tanA=sec2Atan2A1+2tanA2tanA (secA+tanA1)(secAtanA+1)2tanA=sec2Atan2A1 \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\left( \sec A \right)}^{2}}-{{\left( \tan A-1 \right)}^{2}}-2\tan A \\\ \Rightarrow \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\sec }^{2}}A-{{\tan }^{2}}A-1+2\tan A-2\tan A \\\ \Rightarrow \left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A ={{\sec }^{2}}A-{{\tan }^{2}}A-1 \\\
Now we use the trigonometric formula of sec2A=tan2A+1{{\sec }^{2}}A={{\tan }^{2}}A+1. We get
sec2Atan2A1=tan2A+1tan2A1 sec2Atan2A1=0{{\sec }^{2}}A-{{\tan }^{2}}A-1 ={{\tan }^{2}}A+1-{{\tan }^{2}}A-1 \\\ \therefore {{\sec }^{2}}A-{{\tan }^{2}}A-1 =0
Therefore, (secA+tanA1)(secAtanA+1)2tanA=0\left( \sec A+\tan A-1 \right)\left( \sec A-\tan A+1 \right)-2\tan A=0.

Hence, the correct option is C.

Note: The identity formula of sec2A=tan2A+1{{\sec }^{2}}A={{\tan }^{2}}A+1 is derived from the relation between sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1 and dividing it with cos2A{{\cos }^{2}}A. The assumption of a=secA;b=tanA1a=\sec A;b=\tan A-1 can also be taken as a=secA;b=1tanAa=\sec A;b=1-\tan A as the square form omits the negative sign.