Solveeit Logo

Question

Question: The left hand derivative of \(f ( x ) = [ x ]\) \(\sqrt{2}\) at \(\frac{1}{\sqrt{2}}\) (k is an inte...

The left hand derivative of f(x)=[x]f ( x ) = [ x ] 2\sqrt{2} at 12\frac{1}{\sqrt{2}} (k is an integer), is

A

limx1\lim_{x \rightarrow 1}

B

sinx23\sin\left| ||x| - 2| - 3 \right|

C

limx0\lim_{x \rightarrow 0}

D

limn\lim_{n \rightarrow \infty}

Answer

limx1\lim_{x \rightarrow 1}

Explanation

Solution

f(x)=[x]f ( x ) = [ x ] sin(πx)\sin ( \pi x )

If x is just less than k, [x] = k – 1. ∴ , when x<kx < k kI\forall k \in I

Now L.H.D. at x=kx = k,

=limxk(k1)sin(πx)ksin(πk)xk\lim _ { x \rightarrow k } \frac { ( k - 1 ) \sin ( \pi x ) - k \sin ( \pi k ) } { x - k } = limxk(k1)sin(πx)(xk)\lim _ { x \rightarrow k } \frac { ( k - 1 ) \sin ( \pi x ) } { ( x - k ) }

[as sin(πk)=0,k\sin ( \pi k ) = 0 , k \in integer]

= limh0(k1)sin(π(kh))h\lim _ { h \rightarrow 0 } \frac { ( k - 1 ) \sin ( \pi ( k - h ) ) } { - h } [Let x=(kh)x = ( k - h ) ]

= limh0(k1)(1)k1sinhπh\lim _ { h \rightarrow 0 } \frac { ( k - 1 ) ( - 1 ) ^ { k - 1 } \sin h \pi } { - h }

= limh0(k1)(1)k1sinhπhπ×(π)\lim _ { h \rightarrow 0 } ( k - 1 ) ( - 1 ) ^ { k - 1 } \frac { \sin h \pi } { h \pi } \times ( - \pi ) = (k1)(1)kπ( k - 1 ) ( - 1 ) ^ { k } \pi

= (1)k(k1)π( - 1 ) ^ { k } ( k - 1 ) \pi.