Solveeit Logo

Question

Question: The left-hand derivative of f(x) = [x] sin (πx) at x = k, k an integer, is...

The left-hand derivative of f(x) = [x] sin (πx) at x = k, k an integer, is

A

(−1)k (k − 1)π

B

(−1)k1(k − 1)π

C

(−1)k

D

(−1)k1

Answer

(−1)k1(k − 1)π

Explanation

Solution

LDat x=k=\operatorname { LD } _ { \text {at } \mathrm { x } = \mathrm { k } } = limh0f(x)f(kh)h\lim_{h \rightarrow 0}\frac{f(x) - f(k - h)}{- h}

(k = integer)

= limh0[k]sinkπ[kh]sin(kh)πh\lim_{h \rightarrow 0}\frac{\lbrack k\rbrack\sin k\pi - \lbrack k - h\rbrack\sin(k - h)\pi}{- h}

= limh0(k1)sin(kh)πh\lim_{h \rightarrow 0}\frac{(k - 1)\sin(k - h)\pi}{h}

[∴ sin kπ = 0]

= limh0(k1)sin(kπhπ)h[sin(nkθ)=(1)n1sinθ]\lim_{h \rightarrow 0}\frac{(k - 1)\sin(k\pi - h\pi)}{h}\left\lbrack \sin(nk - \theta) = ( - 1)^{n - 1}\sin\theta \right\rbrack

= limh0(k1)(1)k1sinhπhπ×π\lim_{h \rightarrow 0}\frac{(k - 1)( - 1)^{k - 1}{\sin h}\pi}{h\pi} \times \pi

= p (k − 1)(−1)k −1

∴ B is the correct alternative.