Solveeit Logo

Question

Question: The least value of the function \(F(x) =\) \(\int_{5\pi/4}^{x}{(3\sin u + 4\cos u)du}\) on the inter...

The least value of the function F(x)=F(x) = 5π/4x(3sinu+4cosu)du\int_{5\pi/4}^{x}{(3\sin u + 4\cos u)du} on the interval [5π4,4π3]\left\lbrack \frac{5\pi}{4},\frac{4\pi}{3} \right\rbrack is

A

3+32\sqrt{3} + \frac{3}{2}

B

23+32+12- 2\sqrt{3} + \frac{3}{2} + \frac{1}{\sqrt{2}}

C

32+12\frac{3}{2} + \frac{1}{\sqrt{2}}

D

None of these

Answer

23+32+12- 2\sqrt{3} + \frac{3}{2} + \frac{1}{\sqrt{2}}

Explanation

Solution

We have F(x)=3sinx+4cosxF'(x) = 3\sin x + 4\cos x

Since in [5π4,4π3],F(x)<0,\left\lbrack \frac{5\pi}{4},\frac{4\pi}{3} \right\rbrack,F'(x) < 0, so assume the least value at the point x=4π3.x = \frac{4\pi}{3}. Thus, f(4π3)=5π/44π/3(3sinu+4cosu)duf\left( \frac{4\pi}{3} \right) = \int_{5\pi/4}^{4\pi/3}{(3\sin u + 4\cos u)du}

=3223+12= \frac{3}{2} - 2\sqrt{3} + \frac{1}{\sqrt{2}}.