Solveeit Logo

Question

Question: The least value of \[a \in R\] for which \[4a{x^2} + \dfrac{1}{x} \geqslant 1\] for all \[x \geqslan...

The least value of aRa \in R for which 4ax2+1x14a{x^2} + \dfrac{1}{x} \geqslant 1 for all x0x \geqslant 0is
A.164\dfrac{1}{{64}}
B. 132\dfrac{1}{{32}}
C. 127\dfrac{1}{{27}}
D. 125\dfrac{1}{{25}}

Explanation

Solution

Shift the reciprocal to RHS of the inequality and calculate the value of 4a in terms of x. Differentiate the function obtained in RHS of the inequality and substitute back in the inequality. Use the concept that if a constant is greater than the given function, then it will be greater than the differentiation of the function as well.

  • Differentiation of xn{x^n}with respect to x is given by ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}

Complete step by step answer:
We are given the inequality 4ax2+1x14a{x^2} + \dfrac{1}{x} \geqslant 1
Shift 1x\dfrac{1}{x} to RHS of the inequality
4ax211x\Rightarrow 4a{x^2} \geqslant 1 - \dfrac{1}{x}
Take LCM in RHS of the inequality
4ax2x1x\Rightarrow 4a{x^2} \geqslant \dfrac{{x - 1}}{x}
Divide both sides of the equation by x2{x^2}
4ax2x2x1x.x2\Rightarrow \dfrac{{4a{x^2}}}{{{x^2}}} \geqslant \dfrac{{x - 1}}{{x.{x^2}}}
Cancel same factors from numerator and denominator in LHS of the equation and collect powers in denominator of RHS
4ax1x3\Rightarrow 4a \geqslant \dfrac{{x - 1}}{{{x^3}}}
Separate the terms of fraction in RHS of the equation
4axx31x3\Rightarrow 4a \geqslant \dfrac{x}{{{x^3}}} - \dfrac{1}{{{x^3}}}
Cancel same factors from numerator and denominator in RHS of the equation
4a1x21x3\Rightarrow 4a \geqslant \dfrac{1}{{{x^2}}} - \dfrac{1}{{{x^3}}}
Divide both sides by 4,
4a414(1x21x3)\Rightarrow \dfrac{{4a}}{4} \geqslant \dfrac{1}{4}\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{x^3}}}} \right)
Cancel same factors from numerator and denominator
a14(1x21x3)\Rightarrow a \geqslant \dfrac{1}{4}\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{x^3}}}} \right) … (1)
Now we differentiate RHS of the equation
ddx(1x21x3)=2x3+3x4\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{x^3}}}} \right) = \dfrac{{ - 2}}{{{x^3}}} + \dfrac{3}{{{x^4}}}
Equate the differentiation to zero
2x3+3x4=0\Rightarrow \dfrac{{ - 2}}{{{x^3}}} + \dfrac{3}{{{x^4}}} = 0
Shift one term to RHS
2x3=3x4\Rightarrow - \dfrac{2}{{{x^3}}} = - \dfrac{3}{{{x^4}}}
Cancel same terms from both sides of the equation
21=3x\Rightarrow \dfrac{2}{1} = \dfrac{3}{x}
Cross multiply the values to obtain value of x
x=32\Rightarrow x = \dfrac{3}{2}
Substitute the value of x in equation (1)
a14(1(32)21(32)3)\Rightarrow a \geqslant \dfrac{1}{4}\left( {\dfrac{1}{{{{\left( {\dfrac{3}{2}} \right)}^2}}} - \dfrac{1}{{{{\left( {\dfrac{3}{2}} \right)}^3}}}} \right)
a14(49827)\Rightarrow a \geqslant \dfrac{1}{4}\left( {\dfrac{4}{9} - \dfrac{8}{{27}}} \right)
Take LCM in RHS of the equation
a14(12827)\Rightarrow a \geqslant \dfrac{1}{4}\left( {\dfrac{{12 - 8}}{{27}}} \right)
a14(427)\Rightarrow a \geqslant \dfrac{1}{4}\left( {\dfrac{4}{{27}}} \right)
Cancel same factors from numerator and denominator of fraction in RHS
a127\Rightarrow a \geqslant \dfrac{1}{{27}}
\therefore The least value of ‘a’ is 127\dfrac{1}{{27}}

\therefore Option C is correct.

Note: Many students make the mistake of differentiating the terms of fraction as they have variable in denominator, keep in mind we can write the variable in numerator with negative power equal to variable in denominator. Also, while shifting values from one side to another side, always change signs from positive to negative and vice–versa.