Solveeit Logo

Question

Question: The least value of 'a' for which the expression \(\frac{4}{\sin x} + \frac{1}{1 - \sin x} = a.2\lef...

The least value of 'a' for which the expression

4sinx+11sinx=a.2{sgn[limn(12)1n]}\frac{4}{\sin x} + \frac{1}{1 - \sin x} = a.2\left\{ {sgn}\left\lbrack \lim_{n \rightarrow \infty}\left( \frac{1}{2} \right)^{\frac{1}{n}} \right\rbrack \right\} has at least

one solution on the interval (0,π2)\left( 0,\frac{\pi}{2} \right) is

A

9

B

5

C

8

D

4.5

Answer

4.5

Explanation

Solution

f(x)=4sinx+11sinxf(x) = \frac{4}{\sin x} + \frac{1}{1 - \sin x};f(x)=4cosx(sinx)2+cosx(1sinx)2f'(x) = \frac{- 4\cos x}{\left( \sin x \right)^{2}} + \frac{\cos x}{\left( 1 - \sin x \right)^{2}}

= 4cosx(1sinx)2+cosx(sinx)2(sinx)2(1sinx)2\frac{- 4\cos x\left( 1 - \sin x \right)^{2} + \cos x\left( \sin x \right)^{2}}{\left( \sin x \right)^{2}\left( 1 - \sin x \right)^{2}}

f(x)=4cosx(1+sin2x2sinx)+cosx.sin2x(sinx)2(1sinx)2f'(x) = \frac{- 4\cos x\left( 1 + \sin^{2}x - 2\sin x \right) + \cos x.\sin^{2}x}{\left( \sin x \right)^{2}\left( 1 - \sin x \right)^{2}}

For maxima or minima

f(x)=0f'(x) = 0

4cosx4cosxsin2x+8sinxcosx+cosx.sin2x=0- 4\cos x - 4\cos x\sin^{2}x + 8\sin x\cos x + \cos x.\sin^{2}x = 03cosx.sin2x+8sinxcosx4cosx=0- 3\cos x.\sin^{2}x + 8\sin x\cos x - 4\cos x = 0

cosx(3sin2x+8sinx4)=0\cos x\left( - 3\sin^{2}x + 8\sin x - 4 \right) = 0

⇒ cos x ≠ 0; 3sin2x+8sinx4=0- 3\sin^{2}x + 8\sin x - 4 = 0

3sin2x+6sinx+2sinx4=0- 3\sin^{2}x + 6\sin x + 2\sin x - 4 = 0

3sinx(sinx2)+2(sinx2)=0- 3\sin x\left( \sin x - 2 \right) + 2\left( \sin x - 2 \right) = 0

(sinx2)(3sinx+2)\left( \sin x - 2 \right)\left( - 3\sin x + 2 \right)=0

Now, sinx2;sinx=23\sin x \neq 2;\sin x = \frac{2}{3}

4sinx+11sinx=2a\frac{4}{\sin x} + \frac{1}{1 - \sin x} = 2a [sgn(1)=1]\left\lbrack {sgn}(1) = 1 \right\rbrack

42/3+112/3=2a\frac{4}{2/3} + \frac{1}{1 - 2/3} = 2a

122+3=2a\frac{12}{2} + 3 = 2a

92=a\frac{9}{2} = a

a=4.5a = 4.5

so 'd' is correct