Question
Question: The least value of 'a' for which the expression \(\frac{4}{\sin x} + \frac{1}{1 - \sin x} = a.2\lef...
The least value of 'a' for which the expression
sinx4+1−sinx1=a.2{sgn[limn→∞(21)n1]} has at least
one solution on the interval (0,2π) is
A
9
B
5
C
8
D
4.5
Answer
4.5
Explanation
Solution
f(x)=sinx4+1−sinx1;f′(x)=(sinx)2−4cosx+(1−sinx)2cosx
= (sinx)2(1−sinx)2−4cosx(1−sinx)2+cosx(sinx)2
f′(x)=(sinx)2(1−sinx)2−4cosx(1+sin2x−2sinx)+cosx.sin2x
For maxima or minima
f′(x)=0
⇒ −4cosx−4cosxsin2x+8sinxcosx+cosx.sin2x=0⇒ −3cosx.sin2x+8sinxcosx−4cosx=0
⇒ cosx(−3sin2x+8sinx−4)=0
⇒ cos x ≠ 0; −3sin2x+8sinx−4=0
⇒ −3sin2x+6sinx+2sinx−4=0
⇒ −3sinx(sinx−2)+2(sinx−2)=0
⇒ (sinx−2)(−3sinx+2)=0
Now, sinx=2;sinx=32
sinx4+1−sinx1=2a [sgn(1)=1]
⇒ 2/34+1−2/31=2a
⇒ 212+3=2a
⇒ 29=a
⇒ a=4.5
so 'd' is correct