Solveeit Logo

Question

Mathematics Question on sequences

The least value of 'a' for which 51+x+51x,a2,25x+25x5^{1+x}+5^{1-x},\frac{a}{2},25^x+25^{-x} are three consecutive terms of an A.P. is

A

10

B

5

C

12

D

none of these.

Answer

12

Explanation

Solution

Since 51+x+51x,a2,(25)x+(25)x5^{1+x} +5^{1-x}, \frac{a}{2}, \left(25\right)^{x} +\left(25\right)^{-x} are in A.P.A.P. a=51+x+51x+25x+25x\therefore a= 5^{1+x}+5^{1-x}+25^{x}+25^{-x} =5.5x+5.5x+52x+52x=5.5^{x}+5.5^{-x} +5^{2x}+5^{-2x} =5t+5t+t2+1t2 = 5t+\frac{5}{t}+t^{2}+\frac{1}{t^{2}} where 5x=t5^{x}= t =(t1t)2+5(t1t)2+1212=\left(t-\frac{1}{t}\right)^{2} +5\left(\sqrt{t} -\frac{1}{\sqrt{t}}\right)^{2} +12 \ge 12 a12\therefore a \ge 12 \therefore least value of a=12. a=12.