Solveeit Logo

Question

Mathematics Question on solution of system of linear inequalities in two variables

The least value of 2x2+y2+2xy+2x3y+82x^2 + y^2 + 2xy + 2x - 3y + 8 for real numbers xx and y is

A

2

B

8

C

3

D

-0.5

Answer

-0.5

Explanation

Solution

2x2+y2+2xy+2x3y+82 x^{2}+y^{2}+2 x y+2 x-3 y+8
=12[4x2+2y2+4xy+4x6y+16]=\frac{1}{2}\left[4 x^{2}+2 y^{2}+4 x y+4 x-6 y+16\right]
=12[(y28y)+(4x2+y2+4xy+4x+2y)+16]=\frac{1}{2}\left[\left(y^{2}-8 y\right)+\left(4 x^{2}+y^{2}+4 x y+4 x+2 y\right)+16\right] =12[(y4)2+(2x+y+1)21]=\frac{1}{2}\left[(y-4)^{2}+(2 x+y+1)^{2}-1\right]
So, least value will be 12-\frac{1}{2} at y=4y=4
and x=52x=\frac{-5}{2}.