Solveeit Logo

Question

Question: The least positive integer \(n\) which will reduce \({{\left( \dfrac{i-1}{i+1} \right)}^{n}}\) to a ...

The least positive integer nn which will reduce (i1i+1)n{{\left( \dfrac{i-1}{i+1} \right)}^{n}} to a real number is
A. 2
B. 3
C. 4
D. 5

Explanation

Solution

We first rationalise the fraction form of i1i+1\dfrac{i-1}{i+1}. We multiply i1i-1 to both the numerator and denominator of the fraction. We use the relations of imaginary numbers i2=1,i3=i,i4=1{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1. We replace the values to find the least positive integer nn.

Complete step by step answer:
We first apply the rationalisation of complex numbers for i1i+1\dfrac{i-1}{i+1}.
We multiply i1i-1 to both the numerator and denominator of the fraction.
So, i1i+1×i1i1=(i1)2i21\dfrac{i-1}{i+1}\times \dfrac{i-1}{i-1}=\dfrac{{{\left( i-1 \right)}^{2}}}{{{i}^{2}}-1}.
We used the theorem of (a+b)×(ab)=a2b2\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}.
We now break the square using the theorem of (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}.
So, i1i+1=i22i+1i21\dfrac{i-1}{i+1}=\dfrac{{{i}^{2}}-2i+1}{{{i}^{2}}-1}.
We have the relations for imaginary ii where i2=1,i3=i,i4=1{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1. We place the values and get

\Rightarrow \dfrac{i-1}{i+1}=\dfrac{-1-2i+1}{-1-1} \\\ \Rightarrow \dfrac{i-1}{i+1}=i \\\ $$ Therefore, ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}={{i}^{n}}$. From the above relation relations ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$, we can see that the least positive integer $n$ which will reduce ${{\left( \dfrac{i-1}{i+1} \right)}^{n}}$ to a real number is 2. **Hence, the correct option is A.** **Note:** The integer power value of every eve number on $i$ will give the real number. Odd numbers of power value give back the imaginary part. The relation ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$ can also be represented as the unit circle on the complex plane.