Solveeit Logo

Question

Mathematics Question on Determinants

The least positive integer nn such that (cosπ4sinπ4 sinπ4cosπ4)n\begin{pmatrix}\cos \frac{\pi}{4}&\sin \frac{\pi}{4}\\\ -\sin \frac{\pi}{4}&\cos \frac{\pi}{4}\end{pmatrix} ^{n } is an identity matrix of order 22 is

A

4

B

8

C

12

D

16

Answer

8

Explanation

Solution

We have, (cosπ/4sinπ/4 sinπ4cosπ4)n\begin{pmatrix}\cos \pi / 4 & \sin \pi / 4 \\\ -\sin \frac{\pi}{4} & \cos \frac{\pi}{4}\end{pmatrix}^{n}
Let A=(1212 1212)A=\begin{pmatrix}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{pmatrix}
A=(kk kk)(\Rightarrow A=\begin{pmatrix}k & k \\\ -k & k\end{pmatrix} \left(\right. where, k=12)\left.k=\frac{1}{\sqrt{2}}\right)
A2=(kk kk)(kk kk)=(02k2 2k20)\Rightarrow A^{2} =\begin{pmatrix}k & k \\\ -k & k\end{pmatrix}\begin{pmatrix}k & k \\\ -k & k\end{pmatrix} =\begin{pmatrix}0 & 2 k^{2} \\\ -2 k^{2} & 0\end{pmatrix}
A4=(02k2 2k20)(02k2 2k20)A^{4}=\begin{pmatrix}0 & 2 k^{2} \\\ -2 k^{2} & 0\end{pmatrix} \begin{pmatrix}0 & 2 k^{2} \\\ -2 k^{2} & 0\end{pmatrix}
A4=(4k40 04k4)=(4×140 04×14)A^{4}=\begin{pmatrix}-4 k^{4} & 0 \\\ 0 & -4 k^{4}\end{pmatrix}=\begin{pmatrix}-4 \times \frac{1}{4} & 0 \\\ 0 & -4 \times \frac{1}{4}\end{pmatrix}
A4=(10 01)\Rightarrow A^{4}=\begin{pmatrix}-1 & 0 \\\ 0 & -1\end{pmatrix}
A8=(10 01)(10 01)=(10 01)\Rightarrow A^{8}=\begin{pmatrix}-1 & 0 \\\ 0 & -1\end{pmatrix}\begin{pmatrix}-1 & 0 \\\ 0 & -1\end{pmatrix}=\begin{pmatrix}1 & 0 \\\ 0 & 1\end{pmatrix}