Solveeit Logo

Question

Question: The least positive integer \[n\] such that \[1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfra...

The least positive integer nn such that 123232.......23n1<11001 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{n - 1}}}} < \dfrac{1}{{100}}
A.44
B.55
C.66
D.77

Explanation

Solution

Here we substitute value from each option and check if the value on LHS is less than the value on RHS of the inequality. We can solve this question using Trial and error method.

Complete step-by-step answer:
We are given 123232.......23n1<11001 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{n - 1}}}} < \dfrac{1}{{100}}
We first find the value of RHS to which we will compare the sum of terms on LHS.
We have RHS as 1100\dfrac{1}{{100}}which can be written in the decimal form as 0.010.01
So, we take the value in RHS as 0.010.01.
Now we carefully assess each option.
Option A.
Here the value of n=4n = 4.
We substitute the value of n=4n = 4 in the LHS of the equation.

123232.......2341=123232233 123232.......233=12329227  \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{4 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} \\\ \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^3}}} = 1 - \dfrac{2}{3} - \dfrac{2}{9} - \dfrac{2}{{27}} \\\

Now we take LCM

272×92×3227 27186227 127  \Rightarrow \dfrac{{27 - 2 \times 9 - 2 \times 3 - 2}}{{27}} \\\ \Rightarrow \dfrac{{27 - 18 - 6 - 2}}{{27}} \\\ \Rightarrow \dfrac{1}{{27}} \\\

123232233=127 \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} = \dfrac{1}{{27}} … (1)
Calculating the value of 127\dfrac{1}{{27}} we get 0.030.03
Now since 0.03>0.010.03 > 0.01
Therefore, option A is rejected.
Option B.
Here the value of n=5n = 5.
We substitute the value of n=5n = 5 in the LHS of the equation.
123232.......2351=123232233234\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{5 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}}
We know from equation (1) that 123232233=1271 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} = \dfrac{1}{{27}} , substitute the value in above equation
123232233234=127281\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{27}} - \dfrac{2}{{81}}
Now we take LCM

1×3281 3281 181  \Rightarrow \dfrac{{1 \times 3 - 2}}{{81}} \\\ \Rightarrow \dfrac{{3 - 2}}{{81}} \\\ \Rightarrow \dfrac{1}{{81}} \\\

123232233234=181 \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{81}} … (2)
Calculating the value of 181\dfrac{1}{{81}} we get 0.0120.012
Now since 0.012>0.0100.012 > 0.010
Therefore, option B is rejected.
Option C.
Here the value of n=6n = 6.
We substitute the value of n=6n = 6 in the LHS of the equation.
123232.......2361=123232233234235\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - ....... - \dfrac{2}{{{3^{6 - 1}}}} = 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}}
We know from equation (2) that 123232233234=1811 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} = \dfrac{1}{{81}} , substitute the value in above equation
123232233234235=1812273\Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}} = \dfrac{1}{{81}} - \dfrac{2}{{273}}
Now we take LCM

1×32273 32273 1273  \Rightarrow \dfrac{{1 \times 3 - 2}}{{273}} \\\ \Rightarrow \dfrac{{3 - 2}}{{273}} \\\ \Rightarrow \dfrac{1}{{273}} \\\

123232233234235=1273 \Rightarrow 1 - \dfrac{2}{3} - \dfrac{2}{{{3^2}}} - \dfrac{2}{{{3^3}}} - \dfrac{2}{{{3^4}}} - \dfrac{2}{{{3^5}}} = \dfrac{1}{{273}} … (3)
Calculating the value of 1273\dfrac{1}{{273}} we get 0.0030.003
Now since 0.003<0.010.003 < 0.01
Therefore, option C is accepted.
Therefore, least positive integer n=6n = 6
Now since option D has n greater than 6, we will not check for option D as we have to find the least value of n and we have the least value as 6.
So, option C is correct.

Note: Students many times make the mistake of calculating the LCM of all the values again in each step which makes our calculation complex, we should always use the previous deductions to solve further parts. Also, while comparing the decimal values, always keep in mind the position of decimal.