Solveeit Logo

Question

Question: The least positive integer n for which \(\left( \frac{1 + i}{1 - i} \right)^{n}\)= \(\frac { 2 } { ...

The least positive integer n for which (1+i1i)n\left( \frac{1 + i}{1 - i} \right)^{n}= 2π\frac { 2 } { \pi } (sec11x+sin1x)\left( \sec^{- 1}\frac{1}{x} + \sin^{- 1}x \right)

(where x¹ 0; –1 £ x £ 1) is

A

2

B

4

C

6

D

8

Answer

4

Explanation

Solution

Sol. In –1 £ x £ 1, sec–1 (1x)\left( \frac{1}{x} \right)= cos–1 x

\ sec–1 (1x)\left( \frac{1}{x} \right)+ sin–1 x = cos–1 x + sin–1 x = π2\frac{\pi}{2}

\ (1+i1i)n\left( \frac{1 + i}{1 - i} \right)^{n}= 1 Ū [(1+i)22]n\left\lbrack \frac{(1 + i)^{2}}{2} \right\rbrack^{n}= 1 Ū in = 1

Hence least positive integral value of n = 4.