Solveeit Logo

Question

Question: The last two digits of the number \( {23^{14}} \) are ?...

The last two digits of the number 2314{23^{14}} are ?

Explanation

Solution

Hint : In order to solve the given question , we should know the important concepts related to the question that is Binomial Expansion . A Binomial is an algebraic expression containing 2 terms . We use the binomial theorem to help us expand binomials to any given power without direct multiplication . To simplify this question , we need to solve it step by step and we will be using these concepts to get our required answer.

Complete step-by-step answer :
The question given to us is to determine the last two digits of 2314{23^{14}} .
We are going to first break the number to two terms to make it a binomial expression in order to apply binomial expansion .
So we can write 2314{23^{14}} as –

=[(23)2]7= {[{\left( {23} \right)^2}]^7}

=[529]7= {[529]^7}

=(5301)7= {\left( {530 - 1} \right)^7}

Now applying the concept of Binomial Expansion , (x+y)n=k=0n(kn)xnkyk{(x + y)^n} = \sum\limits_{k = 0}^n {(\mathop {}\limits_k^n ){x^{n - k}}{y^k}} , we get-
(a + b)n  = an  + (nC1)an1b + (nC2)an2b2  +  + (nCn1)abn1  + bn{\left( {a{\text{ }} + {\text{ }}b} \right)^n}\; = {\text{ }}{a^n}\; + {\text{ }}\left( {^n{C_1}} \right){a^{n - 1}}b{\text{ }} + {\text{ }}\left( {^n{C_2}} \right){a^{n - 2}}{b^2}\; + {\text{ }} \ldots {\text{ }} + {\text{ }}\left( {^n{C_{n - 1}}} \right)a{b^{n - 1}}\; + {\text{ }}{b^n}

=7C0(530)7(1)0+7C1(530)6(1)1+7C2(530)5(1)2+...............7C7(530)0(1)7= {}^7{C_0}{(530)^7}{( - 1)^0} + {}^7{C_1}{(530)^6}{( - 1)^1} + {}^7{C_2}{(530)^5}{( - 1)^2} + ...............{}^7{C_7}{(530)^0}{( - 1)^7}

=7C0(530)77C1(530)6+7C2(530)5(1)2+...............+1×1×(1)= {}^7{C_0}{(530)^7} - {}^7{C_1}{(530)^6} + {}^7{C_2}{(530)^5}{( - 1)^2} + ............... + 1 \times 1 \times ( - 1)

Since any exponent 0 raised to any number always gives 1 .

=7C0(530)77C1(530)6+7C2(530)5(1)2+...............+1×1×(1)= {}^7{C_0}{(530)^7} - {}^7{C_1}{(530)^6} + {}^7{C_2}{(530)^5}{( - 1)^2} + ............... + 1 \times 1 \times ( - 1)

=7C0(530)77C1(530)6+7C2(530)5(1)2+...............+7C6(530)1(1)61= {}^7{C_0}{(530)^7} - {}^7{C_1}{(530)^6} + {}^7{C_2}{(530)^5}{( - 1)^2} + ............... + {}^7{C_6}{(530)^1}{( - 1)^6} - 1

=7C0(530)77C1(530)6+7C2(530)5(1)2+...............+7C5(530)2(1)5+7×5301= {}^7{C_0}{(530)^7} - {}^7{C_1}{(530)^6} + {}^7{C_2}{(530)^5}{( - 1)^2} + ............... + {}^7{C_5}{(530)^2}{( - 1)^5} + 7 \times 530 - 1

=7C0(53)7×(10)77C1(53)6×(10)6+.........7C5(53)2(10)2+37101= {}^7{C_0}{(53)^7} \times {(10)^7} - {}^7{C_1}{(53)^6} \times {(10)^6} + ......... - {}^7{C_5}{(53)^2}{(10)^2} + 3710 - 1

Now as we got our last expansion as multiple of (10)2{\left( {10} \right)^2} that is we can say that the whole expansion is going to be (10)2k{\left( {10} \right)^2}k .

=7C0(53)7×(10)77C1(53)6×(10)6+.........7C5(53)2(10)2+37101 = {}^7{C_0}{(53)^7} \times {(10)^7} - {}^7{C_1}{(53)^6} \times {(10)^6} + ......... - {}^7{C_5}{(53)^2}{(10)^2} + 3710 - 1

=(10)2k+37101= {\left( {10} \right)^2}k + 3710 - 1

=(10)2k+3709= {\left( {10} \right)^2}k + 3709

=100×k+3709= 100 \times k + 3709

=k×100+3709= k \times 100 + 3709]

So, the expression comes out to be =k×100+3709 = k \times 100 + 3709. If we see the last two digits k×00+09=k×09k \times 00 + 09 = k \times 09
Therefore , the last two digits of the number 2314{23^{14}} are 0909 .
So, the correct answer is “0909”.

Note : Remember the fact that the binomial coefficients that are at an equal distance from the beginning and the end are considered equal .
Learn that in the expansion of (a+b)n{(a + b)^n} , the total number of terms is equal to (n+1)(n + 1) .
Keep in mind that in (a+b)n{(a + b)^n} the sum of the exponents of a and b is always considered as n.
Always try to understand the mathematical statement carefully and keep things distinct .
Remember the properties and apply appropriately .
Choose the options wisely , it's better to break the question and then solve part by part .
Cross check the answer and always keep the final answer simplified .