Solveeit Logo

Question

Question: The last term of an arithmetic progression \(2,{\text{ 5, 8, 11,}}....\) is \({\text{x}}\). The sum ...

The last term of an arithmetic progression 2, 5, 8, 11,....2,{\text{ 5, 8, 11,}}.... is x{\text{x}}. The sum of the terms of the arithmetic progression is 155.155. Find the value of x{\text{x}}.

Explanation

Solution

In this question we have to find the value of x{\text{x}}. For that we are going to find the value by using the given arithmetic progression. From the given arithmetic progression we are going to find the value of n{\text{n}} terms. By using nth{\text{nth}} terms of arithmetic progression, we can get the expression of x{\text{x}}. Next we are going to find the sum of nth{\text{nth}} terms of arithmetic progression, then we get the value of n{\text{n}}. Substitute the value of these in x{\text{x}}, finally we get the value. Here given below in complete step by step solution.

Formula used: The general form of an arithmetic progression is a, a + d, a + 2d, a + 3d{\text{a, a + d, a + 2d, a + 3d}} and soon.
Thus nth{{\text{n}}^{{\text{th}}}} term of an arithmetic progression series is Tn = a + (n - 1)d{{\text{T}}_{\text{n}}}{\text{ = a + }}\left( {{\text{n - 1}}} \right){\text{d}} where Tn= nth{{\text{T}}_{\text{n}}} = {\text{ }}{{\text{n}}^{{\text{th}}}} and
a = {\text{a = }} first term. Here d = {\text{d = }} common difference = Tn - Tn - 1 = {\text{ }}{{\text{T}}_{\text{n}}}{\text{ - }}{{\text{T}}_{{\text{n - 1}}}}.
Sum of first n{\text{n}}terms is Sn=n2(a + l){{\text{S}}_{\text{n}}} = \dfrac{{\text{n}}}{2}\left( {{\text{a + l}}} \right) where is the last term.

Complete step-by-step answer:
Given the last term of an arithmetic progression is 2, 5, 8, 11,....2,{\text{ 5, 8, 11,}}.... is x{\text{x}}.
And the sum of the terms of the arithmetic progression is 155.155.
To find the value of x{\text{x}}.
Here 2, 5, 8, 11,....2,{\text{ 5, 8, 11,}}.... are in arithmetic progression with first term a = 2{\text{a = 2}}
And the common difference is 33.
Let there be n terms in the arithmetic progression
x = nth{\text{x = }}{{\text{n}}^{{\text{th}}}} terms
x = a + (n - 1) d{\text{x = a + }}\left( {{\text{n - 1}}} \right){\text{ d}}
Substitute the values of terms,
x = 2 + (n - 1)3{\text{x = 2 + (n - 1)3}}
Multiple the values of terms,
x = 2 + 3n - 3{\text{x = 2 + 3n - 3}}
Simplifying we get,
x = 3n - 1{\text{x = 3n - 1}}
Now, 2 + 5 + 8 + 11 + .... + x = 1552{\text{ + 5 + 8 + 11 + }}....{\text{ + x = 155}}
By using the sum of n{\text{n}}terms of arithmetic progression,
Sn=n2(a + l){{\text{S}}_{\text{n}}} = \dfrac{{\text{n}}}{2}\left( {{\text{a + l}}} \right)
Substitute the value of a{\text{a}},
n2(2+x)=155\Rightarrow \dfrac{{\text{n}}}{2}\left( {2 + {\text{x}}} \right) = 155
Substitute the value of l{\text{l}},
n2(2+3n - 1)=155\Rightarrow \dfrac{{\text{n}}}{2}\left( {2 + 3{\text{n - 1}}} \right) = 155
Simplifying we get,
n2(3n - 1)=155\Rightarrow \dfrac{{\text{n}}}{2}\left( {{\text{3n - 1}}} \right) = 155
Cross multiplication,
n(3n + 1)=155×2\Rightarrow {\text{n}}\left( {3{\text{n + 1}}} \right) = 155 \times 2
Multiple the value of terms,
n(3n + 1)=310\Rightarrow {\text{n}}\left( {3{\text{n + 1}}} \right) = 310
Multiply the term n into the brackets,
3n2+n = 310\Rightarrow 3{{\text{n}}^2} + {\text{n = 310}}
Rearranging as an equation,
3n2+n - 310 = 0\Rightarrow 3{{\text{n}}^2} + {\text{n - 310 = 0}}
Factorized the terms, we get
3n2 - 30 n + 31 n - 310 = 0\Rightarrow 3{{\text{n}}^2}{\text{ - 30 n + 31 n - 310 = 0}}
Splitting by middle term method,
3n(n - 10)+31(n10)=0\Rightarrow 3{\text{n}}\left( {{\text{n - 10}}} \right) + 31\left( {{\text{n}} - 10} \right) = 0
Simplifying we get,
(n - 10)(3n + 31)=0\Rightarrow \left( {{\text{n - 10}}} \right)\left( {3{\text{n + 31}}} \right) = 0
Therefore, n = 10{\text{n = 10}}.
Now, n terms in the arithmetic progression
x = 3n - 1{\text{x = 3n - 1}}
Substituting the value of n,
x = 3 × 10 - 1\Rightarrow {\text{x = 3 }} \times {\text{ 10 - 1}}
Solve the terms,
x = 30 - 1\Rightarrow {\text{x = 30 - 1}}
Subtracting we get,
x = 29{\text{x = 29}}

The value of x = 29{\text{x = 29}}.

Note: We have used the terms in the given arithmetic progression that is,
In mathematics, an arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15… is an arithmetic progression with a common difference of 2. A finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an arithmetic series.