Solveeit Logo

Question

Question: The largest value of x for which given expression $\sum_{k=0}^{4} (\frac{5^{4-k}}{(4-k)!}) (\frac{x^...

The largest value of x for which given expression k=04(54k(4k)!)(xkk!)=1384\sum_{k=0}^{4} (\frac{5^{4-k}}{(4-k)!}) (\frac{x^k}{k!}) = \frac{1}{384} holds true is k then [k]+5[k] + 5 is equal to where [.] represents greatest integer function

Answer

0

Explanation

Solution

The given expression is k=04(54k(4k)!)(xkk!)\sum_{k=0}^{4} (\frac{5^{4-k}}{(4-k)!}) (\frac{x^k}{k!}). Let's analyze the general term of the summation: 54k(4k)!xkk!\frac{5^{4-k}}{(4-k)!} \frac{x^k}{k!}. We can multiply and divide by 4!4! to relate this to binomial coefficients: 14!4!(4k)!k!54kxk=14!(4k)54kxk\frac{1}{4!} \frac{4!}{(4-k)!k!} 5^{4-k} x^k = \frac{1}{4!} \binom{4}{k} 5^{4-k} x^k.

So the summation can be written as: k=0414!(4k)54kxk=14!k=04(4k)54kxk\sum_{k=0}^{4} \frac{1}{4!} \binom{4}{k} 5^{4-k} x^k = \frac{1}{4!} \sum_{k=0}^{4} \binom{4}{k} 5^{4-k} x^k.

Recall the binomial theorem: (a+b)n=k=0n(nk)ankbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k. In our case, n=4n=4, a=5a=5, and b=xb=x. So, k=04(4k)54kxk=(5+x)4\sum_{k=0}^{4} \binom{4}{k} 5^{4-k} x^k = (5+x)^4.

The given expression is therefore equal to 14!(5+x)4\frac{1}{4!} (5+x)^4. We are given that this expression equals 1384\frac{1}{384}. 14!(5+x)4=1384\frac{1}{4!} (5+x)^4 = \frac{1}{384}.

Calculate 4!4!: 4!=4×3×2×1=244! = 4 \times 3 \times 2 \times 1 = 24. The equation becomes: 124(5+x)4=1384\frac{1}{24} (5+x)^4 = \frac{1}{384}.

Multiply both sides by 24: (5+x)4=24384(5+x)^4 = \frac{24}{384}.

Simplify the fraction 24384\frac{24}{384}: 24384=2424×16=116\frac{24}{384} = \frac{24}{24 \times 16} = \frac{1}{16}.

So, the equation is (5+x)4=116(5+x)^4 = \frac{1}{16}. To solve for 5+x5+x, we take the fourth root of both sides: 5+x=±11645+x = \pm \sqrt[4]{\frac{1}{16}}. 1164=(12)44=12\sqrt[4]{\frac{1}{16}} = \sqrt[4]{(\frac{1}{2})^4} = \frac{1}{2}. So, 5+x=±125+x = \pm \frac{1}{2}.

This gives two possible cases for 5+x5+x:

Case 1: 5+x=125+x = \frac{1}{2} x=125=12102=92=4.5x = \frac{1}{2} - 5 = \frac{1}{2} - \frac{10}{2} = -\frac{9}{2} = -4.5.

Case 2: 5+x=125+x = -\frac{1}{2} x=125=12102=112=5.5x = -\frac{1}{2} - 5 = -\frac{1}{2} - \frac{10}{2} = -\frac{11}{2} = -5.5.

The possible values of xx are 4.5-4.5 and 5.5-5.5. We are asked for the largest value of xx. Comparing the two values, 4.5-4.5 is larger than 5.5-5.5. So, the largest value of xx is 4.5-4.5.

The question states that the largest value of xx is kk. Thus, k=4.5k = -4.5.

We need to calculate [k]+5[k] + 5, where [.][.] represents the greatest integer function. [k]=[4.5][k] = [-4.5]. The greatest integer less than or equal to 4.5-4.5 is 5-5. So, [4.5]=5[-4.5] = -5.

Finally, [k]+5=5+5=0[k] + 5 = -5 + 5 = 0.