Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The largest value of a, for which the perpendicular distance of the plane containing the lines
r(i^+j^)+λ(i^+aj^k^) and r=(i^+j^)+μ(i^+j^ak^)\vec{r} (\hat{i}+\hat{j})+λ(\hat{i}+a\hat{j}−\hat{k})\ and\ \vec{r}=(\hat{i}+\hat{j})+μ(−\hat{i}+\hat{j}−a\hat{k})
from the point (2, 1, 4) is √3, is _____________.

Answer

The correct answer is 2
Normal to plane
=i^j^k^ 1a1 11a=\left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & a & -1 \\\ -1 & 1 & -a \end{matrix} \right|
=i^(1a2)j^(a1)+k^(1+a)=\hat{i}(1−a^2)−\hat{j}(−a−1)+\hat{k}(1+a)
=(1a)i^+j^+k^=(1−a)\hat{i}+\hat{j}+\hat{k}
∴ Plane (1 – a) (x – 1) + (y – 1) + z = 0
Distance from(2,1,4) is 3\sqrt3
i.e
(1a)+0+4(1a)2+1+1=3⇒ |\frac{(1-a)+0+4}{\sqrt{(1-a)^2+1+1}}| = \sqrt3
25+a210a=3a26a+9⇒ 25+a^2-10a = 3a^2-6a+9
2a2+4a16=0⇒ 2a^2+4a-16 = 0
a2+2a8=0⇒ a^2+2a-8 = 0
a=2 or -4
Therefore ,amax=2 a_{max} = 2