Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The largest value of 2x33x212x+52x^3 - 3x^2 - 12x + 5 for 2x4-2 \leq x \leq 4 occurs at xx is equal to :

A

-4

B

4

C

1

D

0

Answer

4

Explanation

Solution

f(x)=2x33x212x+5f(x)=2 x^{3}-3 x^{2}-12 x+5 and 2x4-2 \leq x \leq 4 To find maxima, differentiate f(x)f ( x ) & put it equal to oo f(x)=6x26x12=0f(x)=6 x^{2}-6 x-12=0 x2x2=0\Rightarrow x^{2}-x-2=0 x22x+x2=0\Rightarrow x^{2}-2 x+x-2=0 x(x2)+1(x2)=0\Rightarrow x(x-2)+1(x-2)=0 (x2)(x+1)=0(x-2)(x+1)=0 x=2,1x=2,-1 f(x)=12x6f''(x)=12 x-6 f(2)=18>0f(2)=18 > 0 \therefore At x=2,x=2, value of f(x)f(x) is minimum f(1)=18<0f(-1)=-18 < 0 x=1\therefore x =-1 can be point of maxima \therefore We check value of f(x)f(x) at x=2,2,1,4x=-2,2,-1,4 f(2)=1612+24+5=1f (-2)=-16-12+24+5=1 f(2)=161224+5=15f(2)=16-12-24+5=-15 f(1)=23+12+5=12f (-1)=-2-3+12+5=12 f(4)=1284848+5=37f(4)=128-48-48+5=37 \therefore At x=4,f(x)x =4, f ( x ) is maximum.