Solveeit Logo

Question

Question: The largest number of molecules is present in A. 34 g of \({{H}_{2}}O\) B. 28 g of \(C{{O}_{2}}...

The largest number of molecules is present in
A. 34 g of H2O{{H}_{2}}O
B. 28 g of CO2C{{O}_{2}}
C. 46 g of CH3OHC{{H}_{3}}OH
D. 54 g of N2O5{{N}_{2}}{{O}_{5}}

Explanation

Solution

To calculate the number of molecules first we have to calculate the number of moles of the given elements. Then the number of atoms will be equal to the product of the number of moles and Avogadro’s number.

Complete step by step solution:
The mole is a measurement or it is the basic unit which helps to calculate the amount of substance present in the given sample. 1 mole of a number is equal to Avogadro’s constantNA{{N}_{A}}.
For water-
mass of oxygen = 16g
mass of hydrogen= 2 g
molar mass of water = 18g
Number of mol is calculated by ratio of given mass to the molar mass.
Number of mol of sodium = given massmolar mass\dfrac{\text{given mass}}{\text{molar mass}}
After putting the value we get,
Number of mol of carbon = 3418=1.88\dfrac{34}{18}=1.88moles
And, number of molecules= (number of moles)×(NA)\left( \text{number of moles} \right)\times \left( {{N}_{A}} \right)
= 1.88 NA{{N}_{A}} molecules (NA{{N}_{A}}=6.022×10236.022 \times {{10}^{23}})
For carbon dioxide-
mass of carbon = 12 g
mass of oxygen= 16 g
molar mass of carbon dioxide = 44
Number of mol of carbon dioxide = 4428=1.57\dfrac{44}{28}=1.57moles
And, number of molecules= (number of moles)×(NA)\left( \text{number of moles} \right)\times \left( {{N}_{A}} \right)
= 1.57 NA{{N}_{A}} molecules (NA{{N}_{A}}=6.022×10236.022 \times{{10}^{23}})
For CH3OHC{{H}_{3}}OH-
mass of carbon = 12 g
mass of oxygen= 16 g
molar mass of CH3OHC{{H}_{3}}OH= 32
Number of mol of CH3OHC{{H}_{3}}OH= 4632=1.43\dfrac{46}{32}=1.43moles
And, number of molecule= (number of moles)×(NA)\left( \text{number of moles} \right)\times\left( {{N}_{A}} \right)
= 1.43 NA{{N}_{A}} molecule(NA{{N}_{A}}=6.022×10236.022 \times {{10}^{23}})
For N2O5{{N}_{2}}{{O}_{5}}-
Molar mass of N2O5{{N}_{2}}{{O}_{5}}=108.5
Number of mol of N2O5{{N}_{2}}{{O}_{5}} = 54108=0.5\dfrac{54}{108}=0.5moles
And, number of molecules= (number of moles)×(NA)\left( \text{number of moles} \right)\times\left( {{N}_{A}} \right)
= 0.5 NA{{N}_{A}} molecule (NA{{N}_{A}}=6.022×10236.022 \times {{10}^{23}})

Hence the correct option is (A).

Note: If the question asks you to find the exact number of atoms or molecules then put the value of NA{{N}_{A}} and write the exact number of atoms. 1 mole=6.022×10236.022 \times {{10}^{23}} particle or atoms or molecules or electrons or protons etc.