Solveeit Logo

Question

Mathematics Question on linear inequalities in one variable

The largest interval for which x12x9+x4x+1>0x^{12} - x^9 + x^4 - x + 1 > 0 is

A

4<x0- 4 < x \le 0

B

0 < x < 1

C

- 100 < x < 100

D

<x< - \infty < x < \infty

Answer

<x< - \infty < x < \infty

Explanation

Solution

x12x9+x4x+1>0x^{12} - x^9 + x^4 - x + 1 > 0
Case I When x0x12>0,x9>0,x4>0,x>0x \le 0 \Rightarrow x^{12} > 0, - x^9 > 0, x^4 > 0, - x > 0
x12x9+x4x+1>0,x0\therefore x^{12} - x^9 + x^4 - x + 1 > 0, \, \forall \, x \le 0 \hspace21mm ...(i)
Case II When 0 <x1< x \le 1
x9<x4andx<1x9+x4>0and1x>0x^9 < x^4 \, and \, x < 1 \Rightarrow - x^9 + x^4 > 0 \, and \, 1 - x > 0
\therefore x12x9+x4x+1>0,0<x1x^{12} - x^9 + x^4 - x + 1 > 0, \, \forall \, 0 < x \le 1 \hspace21mm ...(ii)

Case III When x > 1 x12>x9andx4>x\Rightarrow x^{12} > x^9 \, and \, x^4 > x
x12x9+x4x+1>0,x>1\therefore x^{12} - x^9 + x^4 - x + 1 > 0, \forall \, x > 1 \hspace21mm ...(iii)
From Eqs. (i), (ii) and (iii), the above equation holds for all x \in R
Hence , option (d) is the correct answer.