Solveeit Logo

Question

Physics Question on Photoelectric Effect

The kinetic energy of the photoelectrons increases by 0.52eV0.52 \, eV when the wavelength of incident light is changed from 500nm500 \, nm to another wavelength which is approximately

A

700 nm

B

400 nm

C

1250 nm

D

1000 nm

Answer

400 nm

Explanation

Solution

Here, change in kinetic energy, ΔK=0.52eV,λ=500nm,λ2=?\Delta K = 0.52 \, eV, \lambda = 500 \, nm, \lambda_2 = ?
We know , K1=hcλ1=ϕK_1 = \frac{hc}{\lambda_1 } = \phi
K2=hcλ2ϕK_2 = \frac{hc}{\lambda_2} - \phi
K1=K2=hc(1λ11λ2)\therefore \, K_1 = K_2 = hc \left( \frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right)
or, ΔK=hc(1λ11λ2)- \Delta K = hc \left( \frac{1}{\lambda_1 } - \frac{1}{\lambda_2} \right)
or, 0.52eV=(1242eVnm)(1500nm1λ2) - 0.52 eV = \left(1242 eV nm\right) \left(\frac{1}{500 nm } - \frac{1}{\lambda_{2}}\right)

or, 0.521242=15001λ2\frac{-0.52}{1242} = \frac{1}{500} - \frac{1}{\lambda_{2}}
or,1λ2=1500+0.521242\frac{1}{\lambda_{2}} = \frac{1}{500} + \frac{0.52}{1242}
or, λ2=413nm=400nm\lambda_{2} = 413 nm = 400 nm