Solveeit Logo

Question

Physics Question on Oscillations

The kinetic energy of a particle executing simple harmonic motion is 1/6th1/6^{th} of its maximum value at a distance of 5cm5 \,cm from its equilibrium position. The amplitude of its motion is

A

30cm\sqrt{30}\, cm

B

10cm\sqrt{10}\, cm

C

20cm\sqrt{20}\, cm

D

5cm\sqrt{5}\, cm

Answer

30cm\sqrt{30}\, cm

Explanation

Solution

The kinetic energy of a particle executing simple harmonic motion at a distance xx from its equilibrium position is
K=12mω2(A2x2)K=\frac{1}{2}m\omega^{2} \left(A^{2}-x^{2}\right)
where mm is the mass of the particle, ω\omega is the angular frequency and AA is the amplitude of oscillation
The kinetic energy is maximum at equilibrium position (x=0)(x=0) and its maximum value (K0)(K_{0}) is
K0=12mω2A2(i)K_{0}=\frac{1}{2} m\omega^{2}\,A^{2} \dots(i)
At x=5cmx=5\,cm,
K=12mω2(A2(5cm)2)K=\frac{1}{2}m\omega^{2} \left(A^{2}-\left(5\,cm\right)^{2}\right)
But K=16K0K=\frac{1}{6}K_{0}(given)
12mω2(A2(5cm)2)=16(12mω2A2)\therefore \frac{1}{2}m\omega^{2}\left(A^{2}-\left(5\,cm\right)^{2}\right)=\frac{1}{6}\left(\frac{1}{2}m\omega^{2}A^{2}\right)
or A2(5cm)2=A26A^{2}-\left(5\,cm\right)^{2}=\frac{A^{2}}{6}
or A2A26=(5cm)2A^{2}-\frac{A^{2}}{6}=\left(5\,cm\right)^{2}
or 56A2=(5cm)2\frac{5}{6}A^{2}=\left(5 cm\right)^{2}
or A=65(5cm)A=\sqrt{\frac{6}{5}}\left(5\,cm\right)
=30cm=\sqrt{30}\,cm