Solveeit Logo

Question

Question: The kinetic energy of a particle along a circle of radius R is given as K = As where A is a constant...

The kinetic energy of a particle along a circle of radius R is given as K = As where A is a constant and s is the distance travelled. What is the net force acting on the particle –

A

AR1+R2s2\frac{A}{R}\sqrt{1 + \frac{R^{2}}{s^{2}}}

B

A1+4s2R2A\sqrt{1 + \frac{4s^{2}}{R^{2}}}

C

4As1+s2R24As\sqrt{1 + \frac{s^{2}}{R^{2}}}

D

None of the above

Answer

A1+4s2R2A\sqrt{1 + \frac{4s^{2}}{R^{2}}}

Explanation

Solution

K = 12\frac{1}{2} mv2 = As

dKdt\frac{dK}{dt} = vm dvdt\frac{dv}{dt} = A dsdt\frac{ds}{dt} ̃ m dvdt\frac{dv}{dt} = A

̃ dv = Am\frac{A}{m}dt ̃ v = Am\frac{A}{m}t

at = Am\frac{A}{m}, ac = v2R=A2t2m2R\frac{v^{2}}{R} = \frac{A^{2}t^{2}}{m^{2}R}

̃ a0 = at2+ac2=A2m2+(A2t2m2R)2\sqrt{a_{t}^{2} + a_{c}^{2}} = \sqrt{\frac{A^{2}}{m^{2}} + \left( \frac{A^{2}t^{2}}{m^{2}R} \right)^{2}}Also

dsdt=Amts=A2mt2t2=2msA\frac{ds}{dt} = \frac{A}{m}t \Rightarrow s = \frac{A}{2m}t^{2} \Rightarrow t^{2} = \frac{2ms}{A}

Then, a = A2m2+(A2m2R×2msA)2\sqrt{\frac{A^{2}}{m^{2}} + \left( \frac{A^{2}}{m^{2}R} \times \frac{2ms}{A} \right)^{2}}

= A2m2+4A2s2m2R2=Am1+4s2R2\sqrt{\frac{A^{2}}{m^{2}} + \frac{4A^{2}s^{2}}{m^{2}R^{2}}} = \frac{A}{m}\sqrt{1 + \frac{4s^{2}}{R^{2}}}

Thus net force on the particle = ma = A1+4s2R2\sqrt{1 + \frac{4s^{2}}{R^{2}}}