Solveeit Logo

Question

Physics Question on Kinetic Energy

The kinetic energy K of a particle of mass m moving along a circle of radius R depends on distance covered s as K= as2. Then the acceleration of particle is given by

A

2asm(1+s2R2)1/2\frac{2as}{m}{{\left( 1+\frac{{{s}^{2}}}{{{R}^{2}}} \right)}^{1/2}}

B

2asm(1s2R2)1/2\frac{2as}{m}{{\left( 1-\frac{{{s}^{2}}}{{{R}^{2}}} \right)}^{1/2}}

C

2as2mR\frac{2a{{s}^{2}}}{mR}

D

2asm\frac{2as}{m}

Answer

2asm(1+s2R2)1/2\frac{2as}{m}{{\left( 1+\frac{{{s}^{2}}}{{{R}^{2}}} \right)}^{1/2}}

Explanation

Solution

According to given problem 12mv2=as2\frac{1}{2}m{{v}^{2}}=a{{s}^{2}} v=s2amv=s\sqrt{\frac{2a}{m}} So aR=v2R=2as2mR{{a}_{R}}=\frac{{{v}^{2}}}{R}=\frac{2a{{s}^{2}}}{mR} Furthermore as at=dvdt=dvds×dsdt=vdvds{{a}_{t}}=\frac{dv}{dt}=\frac{dv}{ds}\times \frac{ds}{dt}=v\frac{dv}{ds} at=[s2am][2am]{{a}_{t}}=\left[ s\sqrt{\frac{2a}{m}} \right]\left[ \sqrt{\frac{2a}{m}} \right] [v=s2am and dvds=2am]\left[ \because v=s\sqrt{\frac{2a}{m}}\text{ and }\frac{dv}{ds}=\sqrt{\frac{2a}{m}} \right] at=2asm{{a}_{t}}=\frac{2as}{m} Acceleration a=aR2+at2a=\sqrt{a_{R}^{2}+a_{t}^{2}} =[2as2mR]+[2asm]2=\sqrt{\left[ \frac{2a{{s}^{2}}}{mR} \right]+{{\left[ \frac{2as}{m} \right]}^{2}}} =2asm(1+s2R2)=\frac{2as}{m}\sqrt{\left( 1+\frac{{{s}^{2}}}{{{R}^{2}}} \right)}