Solveeit Logo

Question

Question: The kinetic energy \(k\) of a particle moving along a circle of radius \(R\) depends on the distance...

The kinetic energy kk of a particle moving along a circle of radius RR depends on the distance covered. It is given as K.E. = as2 where aa is a constant. The force acting on the particle is

A

2as2R2a\frac{s^{2}}{R}

B

2as(1+s2R2)1/22as\left( 1 + \frac{s^{2}}{R^{2}} \right)^{1/2}

C

2as2as

D

2a6muR2s2a\mspace{6mu}\frac{R^{2}}{s}

Answer

2as(1+s2R2)1/22as\left( 1 + \frac{s^{2}}{R^{2}} \right)^{1/2}

Explanation

Solution

In non-uniform circular motion two forces will work on a particle Fcand FtF_{c}\text{and }F_{t}

So the net force FNet=Fc2+Ft2F_{Net} = \sqrt{F_{c}^{2} + F_{t}^{2}} ….(i)

Centripetal force Fc=mv2R=2as2RF_{c} = \frac{mv^{2}}{R} = \frac{2as^{2}}{R} ….(ii)

[As kinetic energy 12mv2=as2\frac{1}{2}mv^{2} = as^{2} given]

Again from : 12mv2=as2\frac{1}{2}mv^{2} = as^{2} \Rightarrow v2=2as2mv=s2amv^{2} = \frac{2as^{2}}{m} \Rightarrow v = s\sqrt{\frac{2a}{m}}

Tangential acceleration at=dvdt=dvds.dsdta_{t} = \frac{dv}{dt} = \frac{dv}{ds}.\frac{ds}{dt} \Rightarrow

at=dds[s2am].va_{t} = \frac{d}{ds}\left\lbrack s\sqrt{\frac{2a}{m}} \right\rbrack.v

at=v2am=s2am2ama_{t} = v\sqrt{\frac{2a}{m}} = s\sqrt{\frac{2a}{m}}\sqrt{\frac{2a}{m}} =2asm= \frac{2as}{m}

and Ft=mat=2asF_{t} = ma_{t} = 2as ….(iii)

Now substituting value of Fc and Ft in equation (i) FNet=(2as2R)2+(2as)2=2as[1+s2R2]1/2\therefore F_{Net} = \sqrt{\left( \frac{2as^{2}}{R} \right)^{2} + (2as)^{2}} = 2as\left\lbrack 1 + \frac{s^{2}}{R^{2}} \right\rbrack^{1/2}