Solveeit Logo

Question

Question: The \({{K}_{sp}}\text{ (2}{{\text{5}}^{\circ }}\text{C)}\) of sparingly soluble salt \(X{{Y}_{2}}\) ...

The Ksp (25C){{K}_{sp}}\text{ (2}{{\text{5}}^{\circ }}\text{C)} of sparingly soluble salt XY2X{{Y}_{2}} is 3.56 x 105 mol3L33.56\text{ x 1}{{\text{0}}^{-5}}\text{ mo}{{\text{l}}^{3}}{{L}^{-3}} and at 30C{{30}^{\circ }}C, the vapor pressure of its saturated solution in water is 31.78 mm Hg.
XY2+Aq.X2+(aq)+2Y(aq)X{{Y}_{2}}+Aq.\rightleftharpoons {{X}^{2+}}(aq)+2{{Y}^{-}}(aq) (100% ionization)
The enthalpy change of the reaction if the vapor pressure of H2O{{H}_{2}}O at 30C{{30}^{\circ }}C is 31.82 mm in KJ (divide by 25 and write an answer to the nearest integer) is __________

Explanation

Solution

We can use many formula like p0psps=in2n1\dfrac{{{p}^{0}}-{{p}_{s}}}{{{p}_{s}}}=i\dfrac{{{n}_{2}}}{{{n}_{1}}} where p0{{p}^{0}} is the vapor pressure of water, ps{{p}_{s}} is the vapor pressure of solution, i is ionization constant, and n1 and n2{{n}_{1}}\text{ and }{{n}_{2}} are the number of moles, logKsp1Ksp2=ΔH2.303R[T2T1T1T2]\log \dfrac{{{K}_{sp1}}}{{{K}_{sp2}}}=\dfrac{\Delta H}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}{{T}_{2}}} \right], where Ksp{{K}_{sp}} are the solubility products, T2 and T1{{T}_{2}}\text{ and }{{T}_{1}} are the temperatures and ΔH\Delta H is the enthalpy change.

Complete step by step solution: We are given the value of solubility product at 25C{{25}^{\circ }}C is 3.56 x 105 mol3L33.56\text{ x 1}{{\text{0}}^{-5}}\text{ mo}{{\text{l}}^{3}}{{L}^{-3}}.
The value of vapor pressure of water is 31.78 mm Hg that is p0{{p}^{0}} and the value of vapor pressure of the solution is 31.82 mm Hg that is ps{{p}_{s}}.
The given reaction is:
XY2(s)X2++2YX{{Y}_{2}}(s)\rightleftharpoons {{X}^{2+}}+2{{Y}^{-}}
Before equilibrium, the concentration of XY2X{{Y}_{2}} will be a and the concentrations of the products will be 0. After equilibrium, the concentration of X2+{{X}^{2+}} will be s and the concentration is 2Y2{{Y}^{-}} will be 2s. Therefore, total ions forms are 3 and the value of i will be three. We know that:
p0psps=in2n1\dfrac{{{p}^{0}}-{{p}_{s}}}{{{p}_{s}}}=i\dfrac{{{n}_{2}}}{{{n}_{1}}}
where p0{{p}^{0}} is the vapor pressure of water, ps{{p}_{s}} is the vapor pressure of solution, i is ionization constant, and n1 and n2{{n}_{1}}\text{ and }{{n}_{2}} are the number of moles of solute and solution.
n2n1=x2\dfrac{{{n}_{2}}}{{{n}_{1}}}={{x}_{2}}
We can write:
p0psps=i x2\dfrac{{{p}^{0}}-{{p}_{s}}}{{{p}_{s}}}=i\text{ }{{x}_{2}}
Putting the values, we get:
31.8231.7831.78=3 x x2\dfrac{31.82-31.78}{31.78}=3\text{ x }{{x}_{2}}
x2=0.004{{x}_{2}}=0.004
Therefore, n2n1=0.004\dfrac{{{n}_{2}}}{{{n}_{1}}}=0.004, in which n1{{n}_{1}}is the number of moles of water and it is equal to 55.55. The value of n2{{n}_{2}} will be:
n255.55=0.004\dfrac{{{n}_{2}}}{55.55}=0.004
n2=0.0233{{n}_{2}}=0.0233
This is the value of moles of solute and it is the solubility. So, we can write s = 0.0233 mol /L.
The Ksp{{K}_{sp}} at 30C{{30}^{{}^\circ }}C will be = s x s2s\text{ x }{{s}^{2}}
Ksp{{K}_{sp}} at 30C{{30}^{{}^\circ }}C = 0.0233 x (0.0233)20.0233\text{ x (0}\text{.0233}{{\text{)}}^{2}}
Ksp{{K}_{sp}} at 30C{{30}^{{}^\circ }}C = 5.05 x 105 (mol / L)35.05\text{ x 1}{{\text{0}}^{-5}}\text{ (mol / L}{{\text{)}}^{3}}
To calculate the change in enthalpy, we use the formula:
logKsp1Ksp2=ΔH2.303R[T2T1T1T2]\log \dfrac{{{K}_{sp1}}}{{{K}_{sp2}}}=\dfrac{\Delta H}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}{{T}_{2}}} \right]
Where Ksp{{K}_{sp}} are the solubility products, T2 and T1{{T}_{2}}\text{ and }{{T}_{1}} are the temperatures and ΔH\Delta H is the enthalpy change.
Now, putting the values, we get:
log5.05 x 1053.56 x 105=ΔH2.303 x 8.314 [5303 x 298]\log \dfrac{5.05\text{ x 1}{{\text{0}}^{-5}}}{3.56\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{\Delta H}{2.303\text{ x 8}\text{.314 }}\left[ \dfrac{5}{303\text{ x 298}} \right]
ΔH=52.5 KJ /mol\Delta H=52.5\text{ KJ /mol}
Now divide this value by 25 and the nearest integer value will be 2.

Note: The value of the number of moles of water is taken as 55.55 because the volume of water is 1000 ml and 18 is the molecular mass. The value of temperature must be taken always in Kelvin, not in Celsius.