Solveeit Logo

Question

Question: The joint equation of pair of straight lines passing through origin and having slopes \(\left( {1 + ...

The joint equation of pair of straight lines passing through origin and having slopes (1+2)\left( {1 + \sqrt 2 } \right) and (11+2)\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) is
A. x222xy+y2=0{x^2} - 2\sqrt 2 xy + {y^2} = 0
B. x222xyy2=0{x^2} - 2\sqrt 2 xy - {y^2} = 0
C.x2+2xyy2=0{x^2} + 2xy - {y^2} = 0
D. x2+2xy+y2=0{x^2} + 2xy + {y^2} = 0

Explanation

Solution

The equation of line passing through origin is given by y=mxy = mx .
Then, form the equations of the lines with slopes (1+2)\left( {1 + \sqrt 2 } \right) and (11+2)\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) and bring them in the format ymx=0y - mx = 0 .
Now, multiply the L.H.S. and R.H.S. of both equations and form a linear equation.

Complete step-by-step answer:
The equation of a line with slope m is given by y=mx+cy = mx + c .
Here, both the lines pass through origin. So, c=0c = 0 .
Thus, equation of line passing through origin is y=mxy = mx .
Here, slope of first line is given as (1+2)\left( {1 + \sqrt 2 } \right) .
So, equation of first line is y=(1+2)xy = \left( {1 + \sqrt 2 } \right)x , i.e. y(1+2)x=0y - \left( {1 + \sqrt 2 } \right)x = 0 . … (1)
Also, slope of the second line is given as (11+2)\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) .
So, equation of second line is y=(11+2)xy = \left( {\dfrac{1}{{1 + \sqrt 2 }}} \right)x , i.e. y(11+2)x=0y - \left( {\dfrac{1}{{1 + \sqrt 2 }}} \right)x = 0 . … (2)
Now, we are asked to write the joint equation of both lines.
Thus, the joint equation can be written as \left\\{ {y - \left( {1 + \sqrt 2 } \right)x} \right\\}\left\\{ {y - \left( {\dfrac{1}{{1 + \sqrt 2 }}} \right)x} \right\\} = 0 .
Now, we have to simplify the above equation

y2(11+2)xy(1+2)xy+(1+2)(11+2)x2=0 y2(11+2+(1+2))xy+x2=0 y2(1+(1+2)21+2)xy+x2=0 y2(1+(1+2+22)1+2)xy+x2=0 y2(1+3+221+2)xy+x2=0 y2(4+221+2)xy+x2=0 y2(4+221+2)xy+x2=0 y22(2+21+2)xy+x2=0 y22(2+21+2×1212)xy+x2=0 y22(222+2212)xy+x2=0 y22(21)xy+x2=0 y222xy+x2=0  \therefore {y^2} - \left( {\dfrac{1}{{1 + \sqrt 2 }}} \right)xy - \left( {1 + \sqrt 2 } \right)xy + \left( {1 + \sqrt 2 } \right)\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right){x^2} = 0 \\\ \therefore {y^2} - \left( {\dfrac{1}{{1 + \sqrt 2 }} + \left( {1 + \sqrt 2 } \right)} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - \left( {\dfrac{{1 + {{\left( {1 + \sqrt 2 } \right)}^2}}}{{1 + \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - \left( {\dfrac{{1 + \left( {1 + 2 + 2\sqrt 2 } \right)}}{{1 + \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - \left( {\dfrac{{1 + 3 + 2\sqrt 2 }}{{1 + \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - \left( {\dfrac{{4 + 2\sqrt 2 }}{{1 + \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - \left( {\dfrac{{4 + 2\sqrt 2 }}{{1 + \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - 2\left( {\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - 2\left( {\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - 2\left( {\dfrac{{2 - 2\sqrt 2 + \sqrt 2 - 2}}{{1 - 2}}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - 2\left( {\dfrac{{ - \sqrt 2 }}{{ - 1}}} \right)xy + {x^2} = 0 \\\ \therefore {y^2} - 2\sqrt 2 xy + {x^2} = 0 \\\

Thus, the combined equation is y222xy+x2=0{y^2} - 2\sqrt 2 xy + {x^2} = 0 .
So, option (A) is correct.

Note: Alternate method:
The given lines have slopes (1+2)\left( {1 + \sqrt 2 } \right) and (11+2)\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) .
So, m1=(1+2){m_1} = \left( {1 + \sqrt 2 } \right) and m2=(11+2){m_2} = \left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) .
Now, m1m2=(1+2)(11+2)=1{m_1}{m_2} = \left( {1 + \sqrt 2 } \right)\left( {\dfrac{1}{{1 + \sqrt 2 }}} \right) = 1 … (1)
Also, m2=11+2=11+2×1212=1212=21{m_2} = \dfrac{1}{{1 + \sqrt 2 }} = \dfrac{1}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }} = \dfrac{{1 - \sqrt 2 }}{{1 - 2}} = \sqrt 2 - 1
So, m1+m2=2+1+21=22{m_1} + {m_2} = \sqrt 2 + 1 + \sqrt 2 - 1 = 2\sqrt 2
Now, equation of line 1 is ym1x=0y - {m_1}x = 0 and equation of line 2 is ym2x=0y - {m_2}x = 0 .
So, we can write the equation of the pair of lines as (ym1x)(ym2x)=0\left( {y - {m_1}x} \right)\left( {y - {m_2}x} \right) = 0 .
y2m1xym2xy+m1m2x2=0 y2(m1+m2)xy+m1m2x2=0  \therefore {y^2} - {m_1}xy - {m_2}xy + {m_1}{m_2}{x^2} = 0 \\\ \therefore {y^2} - \left( {{m_1} + {m_2}} \right)xy + {m_1}{m_2}{x^2} = 0 \\\
Now, substitute m1+m2=22{m_1} + {m_2} = 2\sqrt 2 and m1m2=1{m_1}{m_2} = 1 .
y222xy+x2=0\therefore {y^2} - 2\sqrt 2 xy + {x^2} = 0
Thus, the combined equation is y222xy+x2=0{y^2} - 2\sqrt 2 xy + {x^2} = 0 .