Solveeit Logo

Question

Mathematics Question on Straight lines

The joint equation of lines passing through the origin and trisecting the first quadrant is ________

A

x2+3xyy2=0x^{2}+\sqrt{3}xy -y^{2} = 0

B

x23xyy2=0x^{2}-\sqrt{3}xy -y^{2} = 0

C

3x24xy+3y2=0\sqrt{3}x^{2} -4xy +\sqrt{3}y^{2} = 0

D

3x2y2=03x^{2} -y^{2} = 0

Answer

3x24xy+3y2=0\sqrt{3}x^{2} -4xy +\sqrt{3}y^{2} = 0

Explanation

Solution

In a trisection of lines in quadrant, angle 9090^{\circ} is divided into three parts and each part contain 3030^{\circ}
\therefore Equation of line OBOB is

y=tan30xy=tan \,30^{\circ} x
y=13x\Rightarrow y =\frac{1}{\sqrt{3}} x
x3y=0x-\sqrt{3} y =0
And equation of line OCOC is
y=tan60xy=tan \,60^{\circ} x
y=3x\Rightarrow y =\sqrt{3x}
(3xy)=0(\sqrt{3} x-y) =0
\therefore Combined equation is
(x3y)(3xy)=0(x-\sqrt{3} y)(\sqrt{3} x-y)=0
3x2xy3xy+3y2=0\Rightarrow \sqrt{3} x^{2}-xy-3xy+\sqrt{3} y^{2}=0
3x24xy+3y2=0\Rightarrow \sqrt{3} x^{2}-4xy+\sqrt{3} y^{2}=0