Solveeit Logo

Question

Question: The isotopes \(238U\) and \(235U\) occur in nature in the ratio of 140 : 1. Assuming that at the tim...

The isotopes 238U238U and 235U235U occur in nature in the ratio of 140 : 1. Assuming that at the time of earth formation, they were present in equal ratio, make an estimation of the age of earth. The half life period of 238U238U and 235U235U are 4.5×1094.5 \times 10^{9} and 7.13×1087.13 \times 10^{8} years respectively

A

6.04×1096.04 \times 10^{9}years

B

5.69×10105.69 \times 10^{10} years

C

6.69×10116.69 \times 10^{11}years

D

6.69×1096.69 \times 10^{9} years

Answer

6.04×1096.04 \times 10^{9}years

Explanation

Solution

Let the age of the earth be t years

For 238U238U λ1×t=2.303logN0U238NU238\lambda_{1} \times t = 2.303\log\frac{N_{0}U_{238}}{NU_{238}} ......(i)

For 235U235U λ2×t=2.303logN0U235NU235\lambda_{2} \times t = 2.303\log\frac{N_{0}U_{235}}{NU_{235}} ......(ii) Subtracting eq. (ii) from eq. (i)

t(λ1λ2)=2.303[logN0U238NU238logN0U235NU235]=2.303logN0U238NU235N0U235NU238t(0.6934.5×1090.6937.13×108)=2.303log1140t(\lambda_{1} - \lambda_{2}) = 2.303\left\lbrack \log\frac{N_{0}U_{238}}{NU_{238}} - \log\frac{N_{0}U_{235}}{NU_{235}} \right\rbrack = 2.303\log\frac{N_{0}U_{238}}{NU_{235}} \cdot \frac{N_{0}U_{235}}{NU_{238}}t\left( \frac{0.693}{4.5 \times 10^{9}} - \frac{0.693}{7.13 \times 10^{8}} \right) = 2.303\log\frac{1}{140}

=(2.303)(2.1461)= - (2.303)(2.1461)

=4.9425= - 4.9425

t=6.04×109t = 6.04 \times 10^{9} years