Question
Question: The ionization constant of water at 27°C is $10^{-14}$ and at 77°C is $2 \times 10^{-14}$ $2H_2O (\...
The ionization constant of water at 27°C is 10−14 and at 77°C is 2×10−14
2H2O(ℓ)⇌H3O+(aq)+OH−(aq) [Take: In 2=0.7]
If magnitude of 'ΔS' at 27°C is 'X' cal mol−1K−1, then Find the value of (10X) (Assume ΔionH is independent of temperature

Answer
5.44
Explanation
Solution
Solution:
-
The equilibrium constant at temperature T is related to ΔG:
ΔG=ΔH−TΔS=−RTlnK.Since ΔH is assumed independent of T, the temperature–variation of K gives:
dTdlnK=RT2ΔH. -
For the two temperatures, we write:
lnK2−lnK1=RΔH(T11−T21),where
K1=10−14 at T1=27∘C=300K,K2=2×10−14 at T2=77∘C=350K.Compute the LHS:
lnK2−lnK1=ln(10−142×10−14)=ln2≈0.6931.And,
3001−3501=300×350350−300=10500050≈0.00047619K−1.Therefore,
ΔH=R×0.000476190.6931.Taking R=1.987calmol−1K−1,
ΔH≈1.987×0.000476190.6931≈2888cal/mol. -
To find ΔS at 27°C (300 K), use the Gibbs relation:
ΔH−TΔS=−RTlnK⟹ΔS=TΔH+RTlnK.For T=300K and ln(10−14)=−14ln10≈−32.236:
ΔS=3002888+1.987×300×(−32.236).First, calculate:
1.987×300≈596.1,596.1×(−32.236)≈−19200cal/mol.Then,
ΔS=3002888−19200≈300−16312≈−54.37calmol−1K−1.The magnitude is ∣ΔS∣≈54.4calmol−1K−1.
-
Since the question defines this magnitude as X and asks for 10X,
10X≈1054.4≈5.44.