Solveeit Logo

Question

Question: The ionization constant of water at 27°C is $10^{-14}$ and at 77°C is $2 \times 10^{-14}$ $2H_2O (\...

The ionization constant of water at 27°C is 101410^{-14} and at 77°C is 2×10142 \times 10^{-14}

2H2O()H3O+(aq)+OH(aq)2H_2O (\ell) \rightleftharpoons H_3O^+ (aq) + OH^- (aq) [Take: In 2=0.7]

If magnitude of 'Δ\DeltaS' at 27°C is 'X' cal mol1K1mol^{-1} K^{-1}, then Find the value of (X10)(\frac{X}{10}) (Assume ΔionH\Delta_{ion}H is independent of temperature

Answer

5.44

Explanation

Solution

Solution:

  1. The equilibrium constant at temperature T is related to ΔG:

    ΔG=ΔHTΔS=RTlnK.\Delta G = \Delta H - T\Delta S = -RT\ln K.

    Since ΔH is assumed independent of T, the temperature–variation of K gives:

    dlnKdT=ΔHRT2.\frac{d\ln K}{dT}=\frac{\Delta H}{RT^2}.
  2. For the two temperatures, we write:

    lnK2lnK1=ΔHR(1T11T2),\ln K_2 - \ln K_1 = \frac{\Delta H}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right),

    where

    K1=1014 at T1=27C=300K,K2=2×1014 at T2=77C=350K.K_1 = 10^{-14} \text{ at } T_1 = 27^\circ\text{C} = 300\,\text{K},\quad K_2=2\times10^{-14}\text{ at } T_2 = 77^\circ\text{C} = 350\,\text{K}.

    Compute the LHS:

    lnK2lnK1=ln(2×10141014)=ln20.6931.\ln K_2 - \ln K_1 = \ln\left(\frac{2\times 10^{-14}}{10^{-14}}\right)=\ln2\approx 0.6931.

    And,

    13001350=350300300×350=501050000.00047619K1.\frac{1}{300}-\frac{1}{350} = \frac{350-300}{300\times350}=\frac{50}{105000}\approx0.00047619\,\text{K}^{-1}.

    Therefore,

    ΔH=R×0.69310.00047619.\Delta H = R\times\frac{0.6931}{0.00047619}.

    Taking R=1.987calmol1K1R = 1.987\,\text{cal\,mol}^{-1}\text{K}^{-1},

    ΔH1.987×0.69310.000476192888cal/mol.\Delta H \approx 1.987\times\frac{0.6931}{0.00047619}\approx 2888\,\text{cal/mol}.
  3. To find ΔS at 27°C (300 K), use the Gibbs relation:

    ΔHTΔS=RTlnKΔS=ΔH+RTlnKT.\Delta H - T\Delta S = -RT\ln K \quad\Longrightarrow\quad \Delta S = \frac{\Delta H + RT\ln K}{T}.

    For T=300KT=300\,\text{K} and ln(1014)=14ln1032.236\ln(10^{-14})=-14\ln10\approx -32.236:

    ΔS=2888+1.987×300×(32.236)300.\Delta S = \frac{2888 + 1.987\times300\times(-32.236)}{300}.

    First, calculate:

    1.987×300596.1,596.1×(32.236)19200cal/mol.1.987\times300\approx 596.1,\quad 596.1\times(-32.236)\approx -19200\,\text{cal/mol}.

    Then,

    ΔS=2888192003001631230054.37calmol1K1.\Delta S = \frac{2888-19200}{300} \approx \frac{-16312}{300}\approx -54.37\,\text{cal\,mol}^{-1}\text{K}^{-1}.

    The magnitude is ΔS54.4calmol1K1|\Delta S|\approx 54.4\,\text{cal\,mol}^{-1}\text{K}^{-1}.

  4. Since the question defines this magnitude as XX and asks for X10\frac{X}{10},

    X1054.4105.44.\frac{X}{10}\approx \frac{54.4}{10}\approx 5.44.