Solveeit Logo

Question

Chemistry Question on Buffer Solutions

The ionization constant of benzoic acid is 6.46×1056.46 \times 10^{-5} and KspK_{sp} for silver benzoate is 2.5×10132.5 \times 10^{-13}. How many times is silver benzoate more soluble in a buffer of pH=3.19pH = 3.19 compared to its solubility in pure water?

A

44

B

3.323.32

C

3.013.01

D

2.52.5

Answer

3.323.32

Explanation

Solution

Suppose SS is the molar solubility of silver benzoate in water, then C6H5COOAg(s)<=>C6H5COO(aq)+Ag(aq)+ {C6H5COOAg_{(s)}<=> C6H5COO^{-}_{(aq)} +Ag^+_{(aq)}} Ksp=S2K_{sp}=S^{2} S=2.5×1013\therefore S=\sqrt{2.5\times10^{-13}} =5.0×107M=5.0\times10^{-7}\,M If the solubility of salt of weak add of ionization constant KaK_{a} is SS', then KspK_{sp}, KaK_{a} and SS' are related to each other at pH=3.19pH = 3.19. [H+]=6.46×104M(pH=3.19)\therefore \left[H^{+}\right]=6.46\times10^{-4}\,M\quad\left(\because pH=3.19\right) Ksp=S2[KaKa+[H+]]K_{sp}=S'^{2}\left[\frac{K_{a}}{K_{a}+\left[H^{+}\right]}\right] S'=\left\\{\frac{2.5\times10^{-13}}{\left[\frac{6.46\times10^{-5}}{6.46\times10^{-5}+6.46\times10^{-4}}\right]}\right\\}^{1/2} S'=\left\\{\frac{2.5\times10^{-13}\times7.106\times10^{-4}}{6.46\times10^{-5}}\right\\}^{1/2} =(2.75×1012)1/2=\left(2.75\times10^{-12}\right)^{1/2} =1.658×106M=1.658\times10^{-6}\,M \therefore The ratio of SS=1.658×1065.0×107\frac{S'}{S}=\frac{1.658\times10^{-6}}{5.0\times10^{-7}} =3.32=3.32 Silver benzoate is 3.323.32 times more soluble in buffer of pH=3.19pH = 3.19 than in pure water.