Solveeit Logo

Question

Question: The inverse of the matrix \(\left[ \begin{matrix} 2 & 0 & -1 \\\ 5 & 1 & 0 \\\ 0 & 1 ...

The inverse of the matrix [201 510 013 ]\left[ \begin{matrix} 2 & 0 & -1 \\\ 5 & 1 & 0 \\\ 0 & 1 & 3 \\\ \end{matrix} \right] is
(a) [311 1565 522 ]\left[ \begin{matrix} 3 & 1 & 1 \\\ -15 & 6 & -5 \\\ 5 & -2 & 2 \\\ \end{matrix} \right]
(b) [311 1565 522 ]\left[ \begin{matrix} 3 & -1 & 1 \\\ -15 & 6 & 5 \\\ 5 & -2 & 2 \\\ \end{matrix} \right]
(c) [311 1565 522 ]\left[ \begin{matrix} 3 & -1 & 1 \\\ -15 & 6 & -5 \\\ 5 & 2 & 2 \\\ \end{matrix} \right]
(d) None of these

Explanation

Solution

Hint:We have a formula from which we can find the inverse of any matrix provided, the determinant of that matrix is not equal to 00. The formula to find the inverse of the matrix AA is A1=1Aadj(A){{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) where A\left| A \right| is the determinant and adj(A)adj\left( A \right) is the adjoint of matrix AA.

Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
The inverse of a matrix AA is given by the formula,
A1=1Aadj(A)..............(1){{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right)..............\left( 1 \right)
Here A\left| A \right| is the determinant and adj(A)adj\left( A \right) is the adjoint of matrix AA.
The determinant of a matrix A=(abc def ghi )A=\left( \begin{matrix} a & b & c \\\ d & e & f \\\ g & h & i \\\ \end{matrix} \right) is given by the formula,
A=a(eifh)b(difg)+c(dheg).................(2)\left| A \right|=a\left( ei-fh \right)-b\left( di-fg \right)+c\left( dh-eg \right).................\left( 2 \right)
To find the adjoint of the matrix, we will first find the cofactor matrix which is given by,
(eifhfgdidheg chbiaicgbgah bfcecdafaebd ).......................(3)\left( \begin{matrix} ei-fh & fg-di & dh-eg \\\ ch-bi & ai-cg & bg-ah \\\ bf-ce & cd-af & ae-bd \\\ \end{matrix} \right).......................\left( 3 \right)
The adjoint of the matrix can be found by taking the transpose of the cofactor matrix. So, the transpose of the matrix is given by,
adj(A)=(eifhchbibfce fgdiaicgcdaf dhegbgahaebd )adj\left( A \right)=\left( \begin{matrix} ei-fh & ch-bi & bf-ce \\\ fg-di & ai-cg & cd-af \\\ dh-eg & bg-ah & ae-bd \\\ \end{matrix} \right)
In the question, we are given a matrix [201 510 013 ]\left[ \begin{matrix} 2 & 0 & -1 \\\ 5 & 1 & 0 \\\ 0 & 1 & 3 \\\ \end{matrix} \right]. We have to find the inverse of this matrix.
Using formula (2)\left( 2 \right), the determinant of this matrix is,
A=2(1.30.1)0(5.30.0)1(5.11.0) A=2(3)0(15)1(5) A=65 A=1.............(4) \begin{aligned} & \left| A \right|=2\left( 1.3-0.1 \right)-0\left( 5.3-0.0 \right)-1\left( 5.1-1.0 \right) \\\ & \Rightarrow \left| A \right|=2\left( 3 \right)-0\left( 15 \right)-1\left( 5 \right) \\\ & \Rightarrow \left| A \right|=6-5 \\\ & \Rightarrow \left| A \right|=1.............\left( 4 \right) \\\ \end{aligned}
The adjoint of the matrix can be found by using the steps shown in the above paragraph,
We have a matrix [201 510 013 ]\left[ \begin{matrix} 2 & 0 & -1 \\\ 5 & 1 & 0 \\\ 0 & 1 & 3 \\\ \end{matrix} \right]. Using formula (3), the cofactor matrix for this matrix will be,
[1.30.10.05.35.11.0 1.10.32.3(1).00.02.1 0.0(1).1(1).52.02.10.5 ] [3155 162 152 ] \begin{aligned} & \left[ \begin{matrix} 1.3-0.1 & 0.0-5.3 & 5.1-1.0 \\\ -1.1-0.3 & 2.3-\left( -1 \right).0 & 0.0-2.1 \\\ 0.0-\left( -1 \right).1 & \left( -1 \right).5-2.0 & 2.1-0.5 \\\ \end{matrix} \right] \\\ & \Rightarrow \left[ \begin{matrix} 3 & -15 & 5 \\\ -1 & 6 & -2 \\\ 1 & -5 & 2 \\\ \end{matrix} \right] \\\ \end{aligned}
The adjoint of the matrix can be found by taking the transpose of the matrix and will be equal to,
adj(A)=[311 1565 522 ]adj\left( A \right)=\left[ \begin{matrix} 3 & -1 & 1 \\\ -15 & 6 & -5 \\\ 5 & -2 & 2 \\\ \end{matrix} \right]
Since we have got the determinant and the adjoint of the matrix, we can now find it’s inverse. Using formula (1)\left( 1 \right), we get,
A1=11[311 1565 522 ] A1=[311 1565 522 ] \begin{aligned} & {{A}^{-1}}=\dfrac{1}{1}\left[ \begin{matrix} 3 & -1 & 1 \\\ -15 & 6 & -5 \\\ 5 & -2 & 2 \\\ \end{matrix} \right] \\\ & \Rightarrow {{A}^{-1}}=\left[ \begin{matrix} 3 & -1 & 1 \\\ -15 & 6 & -5 \\\ 5 & -2 & 2 \\\ \end{matrix} \right] \\\ \end{aligned}
Since none of the options are matching, hence the answer is option (d).

Note: There is a possibility that one may commit a mistake while finding the adjoint of the matrix. It is a very common mistake that one does not take the transpose of the cofactor matrix while finding the adjoint of the matrix and this leads us to an incorrect answer.