Question
Question: The inverse of the matrix $\begin{bmatrix}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$ is...
The inverse of the matrix 13503200−1 is

−31−33901200−3
−31−33−90−1−2003
−3133−90−1−2003
−31−3−3−90−1−2003
−31−33−90−1−2003
Solution
To find the inverse of the matrix A=13503200−1, we can use the Gauss-Jordan method by augmenting the matrix with the identity matrix and performing row operations:
[A∣I]=13503200−1∣∣∣100010001
-
R2→R2−3R1: 10503200−1∣∣∣1−30010001
-
R3→R3−5R1: 10003200−1∣∣∣1−3−5010001
-
R2→31R2: 10001200−1∣∣∣1−1−50310001
-
R3→R3−2R2: 10001000−1∣∣∣1−1−3031−32001
-
R3→−1R3: 100010001∣∣∣1−130313200−1
The left side is now the identity matrix. The right side is the inverse matrix A−1.
A−1=1−130313200−1
To match the form of the options, we can factor out −31:
A−1=−31−3×1−3×(−1)−3×3−3×0−3×31−3×32−3×0−3×0−3×(−1)=−31−33−90−1−2003
This matches option (b).