Solveeit Logo

Question

Question: The inverse of the matrix $\begin{bmatrix}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$ is...

The inverse of the matrix [100330521]\begin{bmatrix}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix} is

A

13[300310923]-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3 \end{bmatrix}

B

13[300310923]-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}

C

13[300310923]-\frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}

D

13[300310923]-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}

Answer

13[300310923]-\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}

Explanation

Solution

To find the inverse of the matrix A=[100330521]A = \begin{bmatrix}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}, we can use the Gauss-Jordan method by augmenting the matrix with the identity matrix and performing row operations:

[AI]=[100100330010521001][A | I] = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 3 & 3 & 0 & | & 0 & 1 & 0 \\ 5 & 2 & -1 & | & 0 & 0 & 1 \end{bmatrix}

  1. R2R23R1R_2 \rightarrow R_2 - 3R_1: [100100030310521001]\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 3 & 0 & | & -3 & 1 & 0 \\ 5 & 2 & -1 & | & 0 & 0 & 1 \end{bmatrix}

  2. R3R35R1R_3 \rightarrow R_3 - 5R_1: [100100030310021501]\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 3 & 0 & | & -3 & 1 & 0 \\ 0 & 2 & -1 & | & -5 & 0 & 1 \end{bmatrix}

  3. R213R2R_2 \rightarrow \frac{1}{3}R_2: [1001000101130021501]\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & \frac{1}{3} & 0 \\ 0 & 2 & -1 & | & -5 & 0 & 1 \end{bmatrix}

  4. R3R32R2R_3 \rightarrow R_3 - 2R_2: [10010001011300013231]\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & \frac{1}{3} & 0 \\ 0 & 0 & -1 & | & -3 & -\frac{2}{3} & 1 \end{bmatrix}

  5. R31R3R_3 \rightarrow -1R_3: [10010001011300013231]\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & \frac{1}{3} & 0 \\ 0 & 0 & 1 & | & 3 & \frac{2}{3} & -1 \end{bmatrix}

The left side is now the identity matrix. The right side is the inverse matrix A1A^{-1}.

A1=[10011303231]A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1 \end{bmatrix}

To match the form of the options, we can factor out 13-\frac{1}{3}:

A1=13[3×13×03×03×(1)3×133×03×33×233×(1)]=13[300310923]A^{-1} = -\frac{1}{3} \begin{bmatrix} -3 \times 1 & -3 \times 0 & -3 \times 0 \\ -3 \times (-1) & -3 \times \frac{1}{3} & -3 \times 0 \\ -3 \times 3 & -3 \times \frac{2}{3} & -3 \times (-1) \end{bmatrix} = -\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}

This matches option (b).