Solveeit Logo

Question

Mathematics Question on Invertible Matrices

The inverse of the matrix [250 011 103]\begin{bmatrix}2&5&0\\\ 0&1&1\\\ -1&0&3\end{bmatrix} is

A

[3155 162 152]\begin{bmatrix}3&-15&5\\\ -1&6&-2\\\ 1&-5&2\end{bmatrix}

B

[311 1565 522]\begin{bmatrix}3&-1&1\\\ -15&6&-5\\\ 5&-2&2\end{bmatrix}

C

[3155 162 152]\begin{bmatrix}3&-15&5\\\ -1&6&-2\\\ 1&-5&-2\end{bmatrix}

D

[355 162 152]\begin{bmatrix}3&-5&5\\\ -1&-6&-2\\\ 1&-5&2\end{bmatrix}

Answer

[3155 162 152]\begin{bmatrix}3&-15&5\\\ -1&6&-2\\\ 1&-5&2\end{bmatrix}

Explanation

Solution

LetA=[250 011 103]Let A=\left[\begin{matrix}2&5&0\\\ 0&1&1\\\ -1&0&3\end{matrix}\right]
A=2(30)5(0+1)\left|A\right|=2\left(3-0\right)-5\left(0+1\right)
=65=1= 6 - 5 = 1
A=1\therefore\, \left|A\right|=1
adjA=[311 1565 522]T=[3155 162 152]adj \, A=\left[\begin{matrix}3&-1&1\\\ -15&6&-5\\\ 5&-2&2\end{matrix}\right]^{T}=\left[\begin{matrix}3&-15&5\\\ -1&6&-2\\\ 1&-5&2\end{matrix}\right]
A1=adjAA=[3155 162 152]A^{-1}=\frac{adj\, A}{\left|A\right|}=\left[\begin{matrix}3&-15&5\\\ -1&6&-2\\\ 1&-5&2\end{matrix}\right]