Solveeit Logo

Question

Mathematics Question on Binary operations

The inverse of the function y=10x10x10x+10x y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} is equal to :

A

log10(2x)\log_{10} (2 - x)

B

12log10(2x1)\frac{1}{2} \log 10 (2x -1)

C

14log102x2x\frac{1}{4} \log_{10} \frac{2x}{2 -x}

D

12log101+x1x\frac{1}{2} \log_{10} \frac{ 1 + x}{1 -x}

Answer

12log101+x1x\frac{1}{2} \log_{10} \frac{ 1 + x}{1 -x}

Explanation

Solution

The given function is : y=10x10x10x+10x y = \frac{10^{x} - 10^{-x}}{10^x + 10^{-x}} By componendo and dividendo, we get, 1+y1y=2.10x2.10x\frac{1+y}{1-y} = \frac{2.10^{x}}{2.10^{-x}} 1+y1y=102x \Rightarrow \frac{1+y}{1-y} = 10^{2x} Taking log10\log_{10} on both sides, we get, 2x=log10(1+y1y)x=12log10(1+y1y) \Rightarrow 2x = \log_{10} \left(\frac{1+y}{1-y} \right) \Rightarrow x = \frac{1}{2} \log_{10} \left(\frac{1+y}{1-y}\right) f1(y)=12log10(1+y1y) \therefore f^{-1} \left(y\right) = \frac{1}{2} \log_{10} \left( \frac{1+y}{1-y}\right) Now replacing y with x, we get inverse, f1(x)=12log10(1+x1x) \therefore f^{-1} \left(x\right) = \frac{1}{2} \log_{10} \left(\frac{1+x}{1-x}\right)