Solveeit Logo

Question

Question: The inverse of the function\[y={{5}^{\ln x}}\]is, choose the correct option: A. \[x={{y}^{\dfrac{1...

The inverse of the functiony=5lnxy={{5}^{\ln x}}is, choose the correct option:
A. x=y1ln  5,  y>0x={{y}^{\dfrac{1}{ln\;5}}},\;y>0
B. x=yln  5,  y>0x={{y}^{ln\;5}},\;y>0
C. x=y1ln  5,  y<0x={{y}^{\dfrac{1}{ln\;5}}},\;y<0
D. x=5lny,  y>0x=5\,\,\ln y,\;y>0

Explanation

Solution

Hint: To find the inverse of the function y=5lnxy={{5}^{\ln x}}replace y with x and x with y, then solve for y, which is the inverse function. Also, use the logarithmic rule loga(xb)=b×loga(x){{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)to simplify and get the required form of the inverse function, as given in the option.

Complete step-by-step answer:
In the question, we have to find the inverse of the function y=5lnxy={{5}^{\ln x}}. So, here we will first interchange the variables x and y for the given function. So, we will get: x=5lnyx={{5}^{\ln y}}
Then we will take the natural log both sides of the above equation as shown below:
ln(x)=ln(5ln(y))\Rightarrow \ln \left( x \right)=\ln \left( {{5}^{\ln \left( y \right)}} \right)
Next, we will apply the log rule that is given as: loga(xb)=b×loga(x){{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right). So, by applying this rule we have: ln(5ln(y))=ln(y)ln(5)\ln \left( {{5}^{\ln \left( y \right)}} \right)=\ln \left( y \right)\ln \left( 5 \right). So, we will have the above equation as:
ln(x)=ln(5ln(y))\Rightarrow \ln \left( x \right)=\ln \left( {{5}^{\ln \left( y \right)}} \right) ln(x)=ln(y)ln(5)\Rightarrow \ln \left( x \right)=\ln \left( y \right)\ln \left( 5 \right)
Now, we will simplify the expression and get the expression for y in term of x, as shown below:
ln(x)=ln(y)ln(5)\Rightarrow \ln \left( x \right)=\ln \left( y \right)\ln \left( 5 \right)

& \Rightarrow \ln \left( y \right)=\dfrac{\ln \left( x \right)}{\ln \left( 5 \right)}\,\,\,\,\,\,\,\,\,\, \\\ & \Rightarrow \dfrac{\ln \left( x \right)}{\ln \left( y \right)}=\ln \left( 5 \right) \\\ & \Rightarrow {{\ln }_{y}}x=\ln \left( 5 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \,\dfrac{\ln \left( b \right)}{\ln \left( a \right)}={{\log }_{a}}\left( b \right) \\\ & \Rightarrow x={{y}^{\ln \left( 5 \right)}}\,\,\,\,\,\,\,\,\,\because \,\text{If}\,{{\log }_{a}}\left( b \right)=c\;\text{then}\;b={{a}^{c}} \\\ \end{aligned}$$ So now, here y is the inverse function and finally, we can say that the inverse of $$y={{5}^{\ln x}}$$is $$x={{y}^{\ln \left( 5 \right)}}$$where y>0. Now, y is always positive for the logarithmic function to be defined. So, the correct answer is option B) $$x={{y}^{ln\;5}},\;y>0$$ Note: While solving the logarithmic function in order to obtain the inverse of it, we will take care that we first interchange x and y in the original function. Also, care has to be taken when we are simplifying $$\dfrac{\ln \left( x \right)}{\ln \left( y \right)}=\ln \left( 5 \right)$$, as this can be converted in the log function by applying the rule $${{\log }_{a}}\left( b \right)=\dfrac{\ln \left( b \right)}{\ln \left( a \right)}$$