Solveeit Logo

Question

Question: The inverse of the function \( f\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}...

The inverse of the function f(x)=9x9x9x+9xf\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} is:
A. f1(x)=log9(1+x1x){f^{ - 1}}\left( x \right) = {\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right)
B. f1(x)=12log9(1+x1x){f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right)
C. f1(x)=14log9(1+x1x){f^{ - 1}}\left( x \right) = \dfrac{1}{4}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right)
D. f1(x)=12log9(2x2x1){f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{2x}}{{2x - 1}}} \right)

Explanation

Solution

Hint : Inverse function is a function that reverses another function. If the value of f(x)f\left( x \right) is y, then applying the inverse function to y gives the value of x. So here consider the given function as y first and then solve for x. The value of x is considered as f1(y){f^{ - 1}}\left( y \right) . Then replace y with x in f1(y){f^{ - 1}}\left( y \right) , which gives our required inverse function f1(x){f^{ - 1}}\left( x \right)

Complete step by step solution:
We are given a function f(x)=9x9x9x+9xf\left( x \right) = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}} and we have to find its inverse.
Let f(x)f\left( x \right) is equal to y.
f(x)=yf\left( x \right) = y , this means y=9x9x9x+9xy = \dfrac{{{9^x} - {9^{ - x}}}}{{{9^x} + {9^{ - x}}}}
Now we are solving for the value of x
y=(9x19x)(9x+19x)\Rightarrow y = \dfrac{{\left( {{9^x} - \dfrac{1}{{{9^x}}}} \right)}}{{\left( {{9^x} + \dfrac{1}{{{9^x}}}} \right)}} (Since we know that am{a^{ - m}} can also be written as 1am\dfrac{1}{{{a^m}}} )
y=((9x×9x)19x)((9x×9x)+19x)\Rightarrow y = \dfrac{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{\left( {{9^x} \times {9^x}} \right) + 1}}{{{9^x}}}} \right)}}
y=(92x19x)(92x+19x)\Rightarrow y = \dfrac{{\left( {\dfrac{{{9^{2x}} - 1}}{{{9^x}}}} \right)}}{{\left( {\dfrac{{{9^{2x}} + 1}}{{{9^x}}}} \right)}} (since we know that am×an{a^m} \times {a^n} can also be written as am+n{a^{m + n}} )
y=92x192x+1\Rightarrow y = \dfrac{{{9^{2x}} - 1}}{{{9^{2x}} + 1}}
On cross multiplication, we get
y(92x+1)=92x1\Rightarrow y\left( {{9^{2x}} + 1} \right) = {9^{2x}} - 1
92xy+y=92x1\Rightarrow {9^{2x}}y + y = {9^{2x}} - 1
Putting exponential terms one side and remaining terms other side, we get
y+1=92x92xy\Rightarrow y + 1 = {9^{2x}} - {9^{2x}}y
Taking out 92x{9^{2x}} common from the left hand side
1+y=92x(1y)\Rightarrow 1 + y = {9^{2x}}\left( {1 - y} \right)
We need the value of x, so put the terms containing x at the left hand side and remaining right hand side.
92x=1+y1y\Rightarrow {9^{2x}} = \dfrac{{1 + y}}{{1 - y}}
Sending 9 present at LHS to the RHS results in a logarithm with base 9.
2x=log9(1+y1y)\Rightarrow 2x = {\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right)
x=12log9(1+y1y)\therefore x = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right)
Therefore, the value of x is 12log9(1+y1y)\dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right) , this means f1(y)=12log9(1+y1y){f^{ - 1}}\left( y \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + y}}{{1 - y}}} \right)
Now replace y with x in f1(y){f^{ - 1}}\left( y \right) to get the inverse function f1(x){f^{ - 1}}\left( x \right)
Therefore, f1(x)=12log9(1+x1x){f^{ - 1}}\left( x \right) = \dfrac{1}{2}{\log _9}\left( {\dfrac{{1 + x}}{{1 - x}}} \right)
So, the correct answer is “Option B”.

Note : We can also verify the resulting inverse function. Equate the inverse function f1(x){f^{ - 1}}\left( x \right) with y and find the new value of x. The result (the value of x in terms of y) should resemble the function f(y)f\left( y \right) or else the result is wrong. Inverse function is not a reciprocal of the original function. It is just another function that undoes whatever done by the original function (like add after subtracting). So please be careful.