Question
Question: The inverse of matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\)is...
The inverse of matrix A=[acbd]is
A
$\begin{bmatrix} d & - b \
- c & a \end{bmatrix}$
B
$\frac{1}{ad - bc}\begin{bmatrix} d & - b \
- c & a \end{bmatrix}$ `
C
∣A∣1[1001]
D
[bd−a−c]
Answer
$\frac{1}{ad - bc}\begin{bmatrix} d & - b \
- c & a \end{bmatrix}$ `
Explanation
Solution
Here∣A∣=acbd=ad−bc, $adj(A) = \begin{bmatrix} d & - b \
- c & a \end{bmatrix}$.
Hence $A^{- 1} = \frac{1}{ad - bc}\begin{bmatrix} d & - b \
- c & a \end{bmatrix}$