Solveeit Logo

Question

Question: The inverse of matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\)is...

The inverse of matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}is

A

$\begin{bmatrix} d & - b \

  • c & a \end{bmatrix}$
B

$\frac{1}{ad - bc}\begin{bmatrix} d & - b \

  • c & a \end{bmatrix}$ `
C

1A[1001]\frac{1}{|A|}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

D

[badc]\begin{bmatrix} b & - a \\ d & - c \end{bmatrix}

Answer

$\frac{1}{ad - bc}\begin{bmatrix} d & - b \

  • c & a \end{bmatrix}$ `
Explanation

Solution

HereA=abcd=adbc|A| = \left| \begin{matrix} a & b \\ c & d \end{matrix} \right| = ad - bc, $adj(A) = \begin{bmatrix} d & - b \

  • c & a \end{bmatrix}$.

Hence $A^{- 1} = \frac{1}{ad - bc}\begin{bmatrix} d & - b \

  • c & a \end{bmatrix}$