Solveeit Logo

Question

Question: The interval in which *x* must lie so that the greatest term in the expansion of \((1 + x)^{2n}\) ha...

The interval in which x must lie so that the greatest term in the expansion of (1+x)2n(1 + x)^{2n} has the greatest coefficient is

A

(n1n,nn1)\left( \frac{n - 1}{n},\frac{n}{n - 1} \right)

B

(nn+1,n+1n)\left( \frac{n}{n + 1},\frac{n + 1}{n} \right)

C

(nn+2,n+2n)\left( \frac{n}{n + 2},\frac{n + 2}{n} \right)

D

None of these

Answer

(nn+1,n+1n)\left( \frac{n}{n + 1},\frac{n + 1}{n} \right)

Explanation

Solution

Here the greatest coefficient is 2nCn2n ⥂ C_{n}

\therefore 2nCnxn>2nCn+1xn12n ⥂ C_{n}x^{n} >^{2n} ⥂ C_{n + 1}x^{n - 1}x>nn+1x > \frac{n}{n + 1} and

2nCnxn>2nCn1xn+1x<n+1n2nC_{n}x^{n} >^{2n} ⥂ C_{n - 1}x^{n + 1} \Rightarrow x < \frac{n + 1}{n}. Hence the result is (2)