Solveeit Logo

Question

Question: The interval in which the function \(x^{2}e^{- x}\) is non decreasing, is...

The interval in which the function x2exx^{2}e^{- x} is non decreasing, is

A

(,2]( - \infty,2\rbrack

B

[0, 2]

C

[2,)\lbrack 2,\infty)

D

None of these

Answer

0,20, 2

Explanation

Solution

Let f(x)=x2exf(x) = x^{2}e^{- x}

dydx=2xexx2ex=ex(2xx2)\frac{dy}{dx} = 2xe^{- x} - x^{2}e^{- x} = e^{- x}(2x - x^{2})

Hence f(x)0f^{'}(x) \geq 0 for everyx[0,2]x \in \lbrack 0,2\rbrack,

therefore it is non-decreasing in [0, 2].